6 resultados para Comunitario
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
This study is focused on the establishment of relationships between the injection moulding processing conditions, the applied thermomechanical environment (TME) and the tensile properties of talc-filled polypropylene,adopting a new extended concept of thermomechanical indices (TMI). In this approach, TMI are calculated from computational simulations of the moulding process that characterise the TME during processing, which are then related to the mechanical properties of the mouldings. In this study, this concept is extended to both the filling and the packing phases, with new TMI defined related to the morphology developed during these phases. A design of experiments approach based on Taguchi orthogonal arrays was adopted to vary the injection moulding parameters (injection flow rate, injection temperature, mould wall temperature and holding pressure), and thus, the TME. Results from analysis of variance for injection-moulded tensile specimens have shown that among the considered processing conditions, the flow rate is the most significant parameter for the Young’s modulus; the flow rate and melt temperature are the most significant for the strain at break; and the holding pressure and flow rate are the most significant for the stress at yield. The yield stress and Young’s modulus were found to be governed mostly by the thermostress index (TSI, related to the orientation of the skin layer), whilst the strain at break depends on both the TSI and the cooling index (CI, associated to the crystallinity degree of the core region). The proposed TMI approach provides predictive capabilities of the mechanical response of injection-moulded components, which is a valuable input during their design stage.
Resumo:
This work focused on the study of the impact event on molded parts in the framework of automotive components. The influence of the impact conditions and processing parameters on the mechanical behavior of talc-filled polypropylene specimens was analyzed. The specimens were lateral-gate discs produced by injection molding, and the mechanical characterization was performed through instrumented falling weight impact tests concomitantly assisted with high-speed videography. Results analyzed using the analysis of variance (ANOVA) method have shown that from the considered parameters, only the dart diameter and test temperature have significant influence on the falling weight impact properties. Higher dart diameter leads to higher peak force and peak energy results. Conversely, higher levels of test temperatures lead to lower values of peak force and peak energy. By means of high-speed videography, a more brittle fracture was observed for experiments with higher levels of test velocity and dart diameter and lower levels of test temperature. The injection-molding process conditions assessed in this study have an influence on the impact response of moldings, mainly on the deformation capabilities of the moldings.
Resumo:
In the last decade, population ageing has been registered as a global phenomenon. A relation exists between falling and ageing, since falling frequency increases significantly with age. In fact, one in three older adult falls annually. Although ageing is generically associated with decrease and degeneration of psychological and physical functions, it is still not common for the correct identification of risk factors to lead to a clinical prognosis of the elder being in risk of falling. Therefore, the goal of this review article is to identify, categorise and analyse typical ageing and fall factors mentioned in the literature as well as to quantify the number of times they were referenced. The research considered hundreds of publications, but analysis was then restricted to the 87 most pertinent articles written in English and published in journals or scientific magazines between 1995 and 2010. We concluded that falls among older adults can be characterised by the following: anatomic characteristics and physiological consequences of ageing; the pathologies that induce falls, which can be neurological, musculoskeletal, cardiovascular and other diseases; causes and risk factors of falls that can be behavioural, biological, environmental or socio-economic; type of physical consequences of falls, including fractures, bruises, injuries or other physical consequences; and strategies to prevent, mitigate or rehabilitate, which can be of a physical, environmental or behavioural nature.
Resumo:
In the last decade, population ageing has been registered as a global phenomenon. A relation exists between falling and ageing, since falling frequency increases significantly with age. In fact, one in three older adult falls annually. Although ageing is generically associated with decrease and degeneration of psychological and physical functions, it is still not common for the correct identification of risk factors to lead to a clinical prognosis of the elder being in risk of falling. Therefore, the goal of this review article is to identify, categorise and analyse typical ageing and fall factors mentioned in the literature as well as to quantify the number of times they were referenced. The research considered hundreds of publications, but analysis was then restricted to the 87 most pertinent articles written in English and published in journals or scientific magazines between 1995 and 2010. We concluded that falls among older adults can be characterised by the following: anatomic characteristics and physiological consequences of ageing; the pathologies that induce falls, which can be neurological, musculoskeletal, cardiovascular and other diseases; causes and risk factors of falls that can be behavioural, biological, environmental or socio-economic; type of physical consequences of falls, including fractures, bruises, injuries or other physical consequences; and strategies to prevent, mitigate or rehabilitate, which can be of a physical, environmental or behavioural nature.
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
This work demonstrates that the theoretical framework of complex networks typically used to study systems such as social networks or the World Wide Web can be also applied to material science, allowing deeper understanding of fundamental physical relationships. In particular, through the application of the network theory to carbon nanotubes or vapour-grown carbon nanofiber composites, by mapping fillers to vertices and edges to the gap between fillers, the percolation threshold has been predicted and a formula that relates the composite conductance to the network disorder has been obtained. The theoretical arguments are validated by experimental results from the literature.