4 resultados para Communication Tools, Virtual Reality
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Several studies suggest that computer-mediated communication can lead to decreases in group effectiveness and reduce satisfaction levels in terms of trust and comfort of its users. Supported by an experiment, where the emotional or affective aspects of communication were tested with the experimentation of two architectures, Direct Communication Architecture (DCA) and the Virtual Communication Architecture (VCA) this paper validates the thesis that, from the users’ perspective, there is no opposition to the acceptance of virtual environments and interfaces for communication, and that these environments are able to cope with the reconfiguration dynamics requirements of virtual teams or client-server relations in a virtual enterprise operation.
Resumo:
Laparoscopy is a surgical procedure on which operations in the abdomen are performed through small incisions using several specialized instruments. The laparoscopic surgery success greatly depends on surgeon skills and training. To achieve these technical high-standards, different apprenticeship methods have been developed, many based on in vivo training, an approach that involves high costs and complex setup procedures. This paper explores Virtual Reality (VR) simulation as an alternative for novice surgeons training. Even though several simulators are available on the market claiming successful training experiences, their use is extremely limited due to the economic costs involved. In this work, we present a low-cost laparoscopy simulator able to monitor and assist the trainee’s surgical movements. The developed prototype consists of a set of inexpensive sensors, namely an accelerometer, a gyroscope, a magnetometer and a flex sensor, attached to specific laparoscopic instruments. Our approach allows repeated assisted training of an exercise, without time constraints or additional costs, since no human artificial model is needed. A case study of our simulator applied to instrument manipulation practice (hand-eye coordination) is also presented.
Resumo:
Once delighted by the moving image advent as a new method of realistically presenting reality, the viewer has been reposition himself towards the audiovisual contents he consumes, as he is given the opportunity to create and share his own perspective of that reality. We are living in a new technological setting, governed mainly by factors of interactivity, digital systems and technological convergence. The research project that we will present in this paper focuses on the subject of participatory media and the way cultural institutions are increasingly facing the inevitability of a profound revision of their traditional parameters of unidirectional communication, given the increasing availability of tools for audiovisual production as well as the diversity of networked communication contexts. The Serralves Foundation with its Museum of Contemporary Art, in Porto, Portugal, was the subject of a fi rst study of an empirical nature: a series of audiovisual objects were developed, in order to generate material for analysis and proposition. In this new stage of the project, our aim is to identify new procedures and practices that may be effectively implemented within the institutional universe. We intend to propose effi cient audiovisual communication contexts, including the maximizing of the relationship between institutions and audiences regarding dimensions that are traditionally outside the institutional radar: identity, narrative and affection. The project is currently in the process of surveying and categorization, with the aim of producing a map of different vocations and positions of the various institutions in regards to the aforementioned issues, which require participatory communication.
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.