4 resultados para Common Scrambling Algorithm Stream Cipher

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many organisations need to extract useful information from huge amounts of movement data. One example is found in maritime transportation, where the automated identification of a diverse range of traffic routes is a key management issue for improving the maintenance of ports and ocean routes, and accelerating ship traffic. This paper addresses, in a first stage, the research challenge of developing an approach for the automated identification of traffic routes based on clustering motion vectors rather than reconstructed trajectories. The immediate benefit of the proposed approach is to avoid the reconstruction of trajectories in terms of their geometric shape of the path, their position in space, their life span, and changes of speed, direction and other attributes over time. For clustering the moving objects, an adapted version of the Shared Nearest Neighbour algorithm is used. The motion vectors, with a position and a direction, are analysed in order to identify clusters of vectors that are moving towards the same direction. These clusters represent traffic routes and the preliminary results have shown to be promising for the automated identification of traffic routes with different shapes and densities, as well as for handling noise data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.