1 resultado para Classical super-integrable field theory
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (20)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (20)
- Archive of European Integration (1)
- Aston University Research Archive (14)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (33)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (93)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (52)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (11)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (204)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Diposit Digital de la UB - Universidade de Barcelona (13)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- Glasgow Theses Service (1)
- Institutional Repository of Leibniz University Hannover (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (261)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (4)
- Universidade do Minho (3)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (8)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (69)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.