3 resultados para Branch and Bound algorithms

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose: Precise needle puncture of the kidney is a challenging and essential step for successful percutaneous nephrolithotomy (PCNL). Many devices and surgical techniques have been developed to easily achieve suitable renal access. This article presents a critical review to address the methodologies and techniques for conducting kidney targeting and the puncture step during PCNL. Based on this study, research paths are also provided for PCNL procedure improvement. Methods: Most relevant works concerning PCNL puncture were identified by a search of Medline/PubMed, ISI Web of Science, and Scopus databases from 2007 to December 2012. Two authors independently reviewed the studies. Results: A total of 911 abstracts and 346 full-text articles were assessed and discussed; 52 were included in this review as a summary of the main contributions to kidney targeting and puncturing. Conclusions: Multiple paths and technologic advances have been proposed in the field of urology and minimally invasive surgery to improve PCNL puncture. The most relevant contributions, however, have been provided by the applicationofmedical imaging guidance, newsurgical tools,motion tracking systems, robotics, andimage processing and computer graphics. Despite the multiple research paths for PCNL puncture guidance, no widely acceptable solution has yet been reached, and it remains an active and challenging research field. Future developments should focus on real-time methods, robust and accurate algorithms, and radiation free imaging techniques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of the osseointegration concept and the Brånemark protocol is highly associated to the accuracy in the production of an implant-supported prosthesis. One of most critical steps for long-term success of these prosthesis is the accuracy obtained during the impression procedure, which is affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of 3D electromagnetic motion tracking systems as an acquisition method for modeling full-arch implant-supported prosthesis. To this extent, we propose an implant acquisition method at the patient mouth and a calibration procedure, based on a 3D electromagnetic tracker that obtains combined measurements of implant’s position and angulation, eliminating the use of any impression material. Three calibration algorithms (namely linear interpolation, higher-order polynomial and Hardy multiquadric) were tested to compensate for the electromagnetic tracker distortions introduced by the presence of nearby metals. Moreover, implants from different suppliers were also tested to study its impact on tracking accuracy. The calibration methodology and the algorithms employed proved to implement a suitable strategy for the evaluation of novel dental impression techniques. However, in the particular case of the evaluated electromagnetic tracking system, the order of magnitude of the obtained errors invalidates its use for the full-arch modeling of implant-supported prosthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood types determination is essential to perform safe blood transfusions. In emergency situations isadministrated the “universal donor” blood type. However, sometimes, this blood type can cause incom-patibilities in the transfusion receptor. A mechatronic prototype was developed to solve this problem.The prototype was built to meet specific goals, incorporating all the necessary components. The obtainedsolution is close to the final system that will be produced later, at industrial scale, as a medical device.The prototype is a portable and low cost device, and can be used in remote locations. A computer appli-cation, previously developed is used to operate with the developed mechatronic prototype, and obtainautomatically test results. It allows image acquisition, processing and analysis, based on Computer Visionalgorithms, Machine Learning algorithms and deterministic algorithms. The Machine Learning algorithmsenable the classification of occurrence, or alack of agglutination in the mixture (blood/reagents), and amore reliable and a safer methodology as test data are stored in a database. The work developed allowsthe administration of a compatible blood type in emergency situations, avoiding the discontinuity of the“universal donor” blood type stocks, and reducing the occurrence of human errors in the transfusion practice.