9 resultados para Body sensor network

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: This work presents detailed experimental performance results from tests executed in the hospital environment for Health Monitoring for All (HM4All), a remote vital signs monitoring system based on a ZigBee® (ZigBee Alliance, San Ramon, CA) body sensor network (BSN). MATERIALS AND METHODS: Tests involved the use of six electrocardiogram (ECG) sensors operating in two different modes: the ECG mode involved the transmission of ECG waveform data and heart rate (HR) values to the ZigBee coordinator, whereas the HR mode included only the transmission of HR values. In the absence of hidden nodes, a non-beacon-enabled star network composed of sensing devices working on ECG mode kept the delivery ratio (DR) at 100%. RESULTS: When the network topology was changed to a 2-hop tree, the performance degraded slightly, resulting in an average DR of 98.56%. Although these performance outcomes may seem satisfactory, further investigation demonstrated that individual sensing devices went through transitory periods with low DR. Other tests have shown that ZigBee BSNs are highly susceptible to collisions owing to hidden nodes. Nevertheless, these tests have also shown that these networks can achieve high reliability if the amount of traffic is kept low. Contrary to what is typically shown in scientific articles and in manufacturers' documentation, the test outcomes presented in this article include temporal graphs of the DR achieved by each wireless sensor device. CONCLUSIONS: The test procedure and the approach used to represent its outcomes, which allow the identification of undesirable transitory periods of low reliability due to contention between devices, constitute the main contribution of this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents experimental results of the communication performance evaluation of a prototype ZigBee-based patient monitoring system commissioned in an in-patient floor of a Portuguese hospital (HPG – Hospital Privado de Guimar~aes). Besides, it revisits relevant problems that affect the performance of nonbeacon-enabled ZigBee networks. Initially, the presence of hidden-nodes and the impact of sensor node mobility are discussed. It was observed, for instance, that the message delivery ratio in a star network consisting of six wireless electrocardiogram sensor devices may decrease from 100% when no hidden-nodes are present to 83.96% when half of the sensor devices are unable to detect the transmissions made by the other half. An additional aspect which affects the communication reliability is a deadlock condition that can occur if routers are unable to process incoming packets during the backoff part of the CSMA-CA mechanism. A simple approach to increase the message delivery ratio in this case is proposed and its effectiveness is verified. The discussion and results presented in this paper aim to contribute to the design of efficient networks,and are valid to other scenarios and environments rather than hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content present in the samples, without losing the high strain deformation on the polymer matrix (~1500 %). Further, above the percolation threshold these materials are unique for the development of large deformation sensors due to the strong piezoresistive response. Piezoresistive properties evaluated by uniaxial stretching in tensile mode and 4-point bending showed a Gauge Factors up to 120. The excellent linearity obtained between strain and electrical resistance makes these composites interesting for large strain piezoresistive sensors applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential increase of home-bound persons who live alone and are in need of continuous monitoring requires new solutions to current problems. Most of these cases present illnesses such as motor or psychological disabilities that deprive of a normal living. Common events such as forgetfulness or falls are quite common and have to be prevented or dealt with. This paper introduces a platform to guide and assist these persons (mostly elderly people) by providing multisensory monitoring and intelligent assistance. The platform operates at three levels. The lower level, denominated ‘‘Data acquisition and processing’’performs the usual tasks of a monitoring system, collecting and processing data from the sensors for the purpose of detecting and tracking humans. The aim is to identify their activities in an intermediate level called ‘‘activity detection’’. The upper level, ‘‘Scheduling and decision-making’’, consists of a scheduler which provides warnings, schedules events in an intelligent manner and serves as an interface to the rest of the platform. The idea is to use mobile and static sensors performing constant monitoring of the user and his/her environment, providing a safe environment and an immediate response to severe problems. A case study on elderly fall detection in a nursery home bedroom demonstrates the usefulness of the proposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the opinion of clinicians, emerging medical conditions can be timely detected by observing changes in the activities of daily living and/or in the physiological signals of a person. To accomplish such purpose, it is necessary to properly monitor both the person’s physiological signals as well as the home environment with sensing technology. Wireless sensor networks (WSNs) are a promising technology for this support. After receiving the data from the sensor nodes, a computer processes the data and extracts information to detect any abnormality. The computer runs algorithms that should have been previously developed and tested in real homes or in living-labs. However, these installations (and volunteers) may not be easily available. In order to get around that difficulty, this paper suggests the making of a physical model to emulate basic actions of a user at home, thus giving autonomy to researchers wanting to test the performance of their algorithms. This paper also studies some data communication issues in mobile WSNs namely how the orientation of the sensor nodes in the body affects the received signal strength, as well as retransmission aspects of a TDMA-based MAC protocol in the data recovery process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates that the theoretical framework of complex networks typically used to study systems such as social networks or the World Wide Web can be also applied to material science, allowing deeper understanding of fundamental physical relationships. In particular, through the application of the network theory to carbon nanotubes or vapour-grown carbon nanofiber composites, by mapping fillers to vertices and edges to the gap between fillers, the percolation threshold has been predicted and a formula that relates the composite conductance to the network disorder has been obtained. The theoretical arguments are validated by experimental results from the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents Palco, a prototype system specifically designed for the production of 3D cartoon animations. The system addresses the specific problems of producing cartoon animations, where the main obj ective is not to reproduce realistic movements, but rather animate cartoon characters with predefined and characteristic body movements and facial expressions. The techniques employed in Palco are simple and easy to use, not requiring any invasive or complicated motion capture system, as both body motion and facial expression of actors are captured simultaneously, using an infrared motion detection sensor, a regular camera and a pair of electronically instrumented gloves. The animation process is completely actor-driven, with the actor controlling the character movements, gestures, facial expression and voice, all in realtime. The actor controlled cartoonification of the captured facial and body motion is a key functionality of Palco, and one that makes it specifically suited for the production of cartoon animations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand and finger tracking has a major importance in healthcare, for rehabilitation of hand function required due to a neurological disorder, and in virtual environment applications, like characters animation for on-line games or movies. Current solutions consist mostly of motion tracking gloves with embedded resistive bend sensors that most often suffer from signal drift, sensor saturation, sensor displacement and complex calibration procedures. More advanced solutions provide better tracking stability, but at the expense of a higher cost. The proposed solution aims to provide the required precision, stability and feasibility through the combination of eleven inertial measurements units (IMUs). Each unit captures the spatial orientation of the attached body. To fully capture the hand movement, each finger encompasses two units (at the proximal and distal phalanges), plus one unit at the back of the hand. The proposed glove was validated in two distinct steps: a) evaluation of the sensors’ accuracy and stability over time; b) evaluation of the bending trajectories during usual finger flexion tasks based on the intra-class correlation coefficient (ICC). Results revealed that the glove was sensitive mainly to magnetic field distortions and sensors tuning. The inclusion of a hard and soft iron correction algorithm and accelerometer and gyro drift and temperature compensation methods provided increased stability and precision. Finger trajectories evaluation yielded high ICC values with an overall reliability within application’s satisfying limits. The developed low cost system provides a straightforward calibration and usability, qualifying the device for hand and finger tracking in healthcare and animation industries.