21 resultados para Biomedical Image Processing
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Protein aggregation became a widely accepted marker of many polyQ disorders, including Machado-Joseph disease (MJD), and is often used as readout for disease progression and development of therapeutic strategies. The lack of good platforms to rapidly quantify protein aggregates in a wide range of disease animal models prompted us to generate a novel image processing application that automatically identifies and quantifies the aggregates in a standardized and operator-independent manner. We propose here a novel image processing tool to quantify the protein aggregates in a Caenorhabditis elegans (C. elegans) model of MJD. Confocal mi-croscopy images were obtained from animals of different genetic conditions. The image processing application was developed using MeVisLab as a platform to pro-cess, analyse and visualize the images obtained from those animals. All segmenta-tion algorithms were based on intensity pixel levels.The quantification of area or numbers of aggregates per total body area, as well as the number of aggregates per animal were shown to be reliable and reproducible measures of protein aggrega-tion in C. elegans. The results obtained were consistent with the levels of aggrega-tion observed in the images. In conclusion, this novel imaging processing applica-tion allows the non-biased, reliable and high throughput quantification of protein aggregates in a C. elegans model of MJD, which may contribute to a significant improvement on the prognosis of treatment effectiveness for this group of disor-ders
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Pectus carinatum (PC) is a chest deformity caused by a disproportionate growth of the costal cartilages compared to the bony thoracic skeleton, pulling the sternum towards, which leads to its protrusion. There has been a growing interest on using the ‘reversed Nuss’ technique as minimally invasive procedure for PC surgical correction. A corrective bar is introduced between the skin and the thoracic cage and positioned on top of the sternum highest protrusion area for continuous pressure. Then, it is fixed to the ribs and kept implanted for about 2–3 years. The purpose of this work was to (a) assess the stresses distribution on the thoracic cage that arise from the procedure, and (b) investigate the impact of different positioning of the corrective bar along the sternum. The higher stresses were generated on the 4th, 5th and 6th ribs backend, supporting the hypothesis of pectus deformities correction-induced scoliosis. The different bar positioning originated different stresses on the ribs’ backend. The bar position that led to lower stresses generated on the ribs backend was the one that also led to the smallest sternum displacement. However, this may be preferred, as the risk of induced scoliosis is lowered.
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Color model representation allows characterizing in a quantitative manner, any defined color spectrum of visible light, i.e. with a wavelength between 400nm and 700nm. To accomplish that, each model, or color space, is associated with a function that allows mapping the spectral power distribution of the visible electromagnetic radiation, in a space defined by a set of discrete values that quantify the color components composing the model. Some color spaces are sensitive to changes in lighting conditions. Others assure the preservation of certain chromatic features, remaining immune to these changes. Therefore, it becomes necessary to identify the strengths and weaknesses of each model in order to justify the adoption of color spaces in image processing and analysis techniques. This chapter will address the topic of digital imaging, main standards and formats. Next we will set the mathematical model of the image acquisition sensor response, which enables assessment of the various color spaces, with the aim of determining their invariance to illumination changes.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
In medical emergency situations, when a patient needs a blood transfusion, the universal blood type O− is administered. This procedure may lead to the depletion of stock reserves of O− blood. Nowadays, there is no commercial equipment capable of determining the patient's blood type in situ, in a fast and reliable process. Human blood typing is usually performed through the manual test, which involves a macroscopic observation and interpretation of the results by an analyst. This test, despite of having a fast response time, may lead to human errors, which sometimes can be fatal to the patient. This paper presents the development of an automatic mechatronic prototype for determining human blood typing (ABO and Rh systems) through image processing techniques. The prototype design takes into account the characteristics of reliability of analysis, portability, and response time allowing the system to be used in emergency situations. The developed prototype performs blood and reagents mixture acquires the resultant image and processes the data (based on image processing techniques) to determine the sample blood type. It was tested in a laboratory, using cataloged samples of blood types, provided by the Portuguese Institute of Blood and Transplantation. Hereafter, it is expected to test and validate the prototype in clinical environments.
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent.
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.