2 resultados para Assistance in emergencies
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.
Resumo:
Elders lose independence and wellbeing, accompanied by decreased functions in terms of hearing, vision, strength and coordination abilities. These factors contribute to balance difficulties that eventually lead to falls. The injuries due to falls, at this age, are risky, since most of the times may cause a significant – and permanent – decrease of quality of life or, in extreme cases, death. In this context, a fall detection system can bring an added value to assist elderly people.This paper describes a system consisting of a wearable sensor unit, a smartphone and a website. When the sensor detects a fall it sends an alert using the smartphone via Bluetooth 4.0, to notify the family members or stakeholders. The sensor device includes an inertial unit, a barometer, and a temperature and humidity sensor. The website displays the log of previous falls and enables the configuration of emergency contact numbers. The proposed fall detection system is one of multiple components within a larger project under development that offers a holistic perspective on falls; the complete wearable solution will also feature, among others, physical protection (minimizing the impact of falls that occur).