3 resultados para Angular Momentum Operator Cartesian Spherical Polar
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.