2 resultados para Actively Managed

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HCI community is actively seeking novel methodologies to gain insight into the user’s experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies’ scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biocompatibility is a major challenge for successful application of many biomaterials. In this study the ability to coat chemically and enzymatically activated poly(L-lactic acid) (PLA) membranes with heat denatured human serum albumin to improve biocompatibility was investigated. PLA membranes hydrolyzed with NaOH or cutinase and then treated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, hydrochloride (EDAC) as a heterobifunctional cross-linker promoted the coupling single bondCOOH groups on PLA membranes and single bondNH2 groups of heat denatured human serum albumin. This resulted in increased hydrophilicity (lowest water contact angles of 43° and 35°) and highest antioxidant activity (quenching of 79 μM and 115 μM tetramethylazobisquinone (TMAMQ) for NaOH and cutinase pretreated membranes, respectively). FTIR analysis of modified PLA membranes showed new peaks attributed to human serum albumin (amide bond, NH2 and side chain stretching) appearing within 3600–3000 cm−1 and 1700–1500 cm−1 (Fig. 3). MTT studies also showed that osteoblasts-like and MC-3T3-E1 cells viability increased 2.4 times as compared to untreated PLA membranes. The study therefore shows that this strategy of modifying the surfaces of PLA polymers could significantly improve biocompatibility.