11 resultados para 3D Selection
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Purpose Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win-win or trade-off situations will be identified via a Life Cycle Assessment/Life Cycle Costing (LCA/LCC) integrated model. Methods The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the Life Cycle Inventory (LCI) and the Life Cycle Impact Assessment (LCIA). Results In both the SST and CST systems the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win-win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its End-of-Life stage. Conclusions The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Further, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company, or in some cases even in its procurement practices.
Resumo:
The paper proposes a methodology especially focused on the generation of strategic plans of action, emphasizing the relevance of having a structured timeframe classification for the actions. The methodology explicitly recognizes the relevance of long-term goals as strategic drivers, which must insure that the complex system is capable to effectively respond to changes in the environment. In addition, the methodology employs engineering systems techniques in order to understand the inner working of the system and to build up alternative plans of action. Due to these different aspects, the proposed approach features higher flexibility compared to traditional methods. The validity and effectiveness of the methodology has been demonstrated by analyzing an airline company composed by 5 subsystems with the aim of defining a plan of action for the next 5 years, which can either: improve efficiency, redefine mission or increase revenues.
Resumo:
Information systems are a foundation key element of modern organizations. Quite often, chief executive officers and managers have to decide about the acquisition of new software solution based in an appropriated set of criteria. Analytic Hierarchy Process (AHP) is one technique used to support that kind of decisions. This paper proposes the application of AHP method to the selection of ERP (Enterprise Resource Planning) systems, identifying the set of criteria to be used. A set of criteria was retrieved from the scientific literature and validated through a survey-based approach.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
O desenvolvimento de personagens digitais tridimensionais1 na área da animação, a constante procura por soluções tecnológicas convincentes, aliado a uma estética própria, tem contribuído para o sucesso e afirmação da animação tridimensional, na indústria do entretenimento. Contudo, toda a obra que procura ou explora a vertente digital/3D, torna-se ‘vitima’ das limitações do render2 aplicado a uma sequência de imagens, devido ao aumento dos custos financeiros e humanos, assim como da influência e dificuldade implicadas no cumprimento dos objectivos e prazos. O tempo real tem assumido, cada vez mais, um papel predominante na indústria da animação interactiva. Com a evolução da tecnologia surgiu a necessidade de procurar a metodologia apropriada que sirva de alavanca para o desenvolvimento de animações 3D em tempo real, através de softwares open-source ou de baixo orçamento, para a redução de custos, que possibilite simultaneamente descartar qualquer dependência do render na animação 3D. O desenvolvimento de personagens em tempo real, possibilita o surgimento de uma nova abordagem: a interactividade na arte de animar. Esta possibilita a introdução de um vasto leque de novas aplicações e consequentemente, contribui para o aumento do interesse e curiosidade por parte do espectador. No entanto, a inserção, implementação e (ab)uso da tecnologia na área da animação, levanta questões atuais sobre qual o papel do animador. Esta dissertação procura analisar estes aspectos, dando apoio ao projecto de animação 3D em tempo real, denominado ‘PALCO’.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
This paper presents Palco, a prototype system specifically designed for the production of 3D cartoon animations. The system addresses the specific problems of producing cartoon animations, where the main obj ective is not to reproduce realistic movements, but rather animate cartoon characters with predefined and characteristic body movements and facial expressions. The techniques employed in Palco are simple and easy to use, not requiring any invasive or complicated motion capture system, as both body motion and facial expression of actors are captured simultaneously, using an infrared motion detection sensor, a regular camera and a pair of electronically instrumented gloves. The animation process is completely actor-driven, with the actor controlling the character movements, gestures, facial expression and voice, all in realtime. The actor controlled cartoonification of the captured facial and body motion is a key functionality of Palco, and one that makes it specifically suited for the production of cartoon animations.
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.
Resumo:
Introduction and Objectives. Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons’ performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Materials and Methods. Each participant performed 3 laparoscopic tasks—Peg transfer, Wire chaser, Knot—in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Results. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). Conclusion. The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures.