730 resultados para Pondus.info


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improvement of the environmental performance of processes and products is a common objective in industry, and has been receiving increased attention in recent years. The main objective of this work is to evaluate the potential environmental impact of two bedding products, a polyurethane foam mattress (PFM) and a pocket spring mattress (PSM). These two types are the most common mattresses used in Europe. A Life Cycle Assessment (LCA) shows that the PFM has a higher environmental impact than the PSM. For both products the main cause of environmental impact is the manufacturing process, respectively the polyurethane foam block moulding process for the PFM, and the pocket spring nucleus process for the PSM. A scenario analysis shows the possibility of reducing the environmental impact of the products’ life cycle using an alternative End-of-Life scenario, resorting to incineration rather than landfill. Two strategies were also studied in order to reduce the environmental impact of the PFM: (1) reutilization of foam that was sent to the waste system management, and (2) a 20% weight reduction of the polyurethane foam. The second strategy has proven to be the most effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water and electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 m width were achieved. After cross-linking with glutaraldehyde, -elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ~ 80 ºC. Moreover, -Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for oriented and random fibers mats in a PBS solution was 330 ± 10 kPa and 732 ± 165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. Themechanical properties aremainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – The health and social care sector is receiving growing attention due to the increased life expectancy and to the public demand for a better quality of life and better health services. New cost-efficient approaches are required, and the paper aims to present and discuss the main results of a study undertaken in a Portuguese municipality on the perceived relevance of an e-marketplace of social and healthcare services for the inhabitants in general, and for people with special needs in particular, and the identification of the most relevant services to be offered through this platform. Design/methodology/approach – A wide survey was undertaken to identify the needs of potential users and their expectancies with relation to the proposed platform. The results of the study are a support for the project promoters to understand the viability of the solution and the requirements to the deployment of the pilot experiment, as well as to drive the selection of domains of activities/classes of services to be offered by the platform. Findings – Services such as information about healthcare services, home monitoring/accompanying services 24 hours per day, and personal hygiene services provided at home are the ones recognized by the inquired citizens as the most important, which indicates that the potential users will be mostly people with special needs or their family or caregivers. Originality/value – While still at a preliminary development phase, the project represents a good opportunity to develop a totally innovative service with high potential impact for the senior population and for individuals with special needs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indentation tests are used to determine the hardness of a material, e.g., Rockwell, Vickers, or Knoop. The indentation process is empirically observed in the laboratory during these tests; the mechanics of indentation is insufficiently understood. We have performed first molecular dynamics computer simulations of indentation resistance of polymers with a chain structure similar to that of high density polyethylene (HDPE). A coarse grain model of HDPE is used to simulate how the interconnected segments respond to an external force imposed by an indenter. Results include the time-dependent measurement of penetration depth, recovery depth, and recovery percentage, with respect to indenter force, indenter size, and indentation time parameters. The simulations provide results that are inaccessible experimentally, including continuous evolution of the pertinent tribological parameters during the entire indentation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part replacement and repair is needed in structures with moving parts because of scratchability and wear. In spite of some accumulation of experimental evidence, scratch resistance is still not well understood. We have applied molecular dynamics to study scratch resistance of amorphous polymeric materials through computer simulations. As a first approach, a coarse grain model was created for high density polyethylene at the mesoscale. We have also extended the traditional approach and used real units rather than reduced units (to our knowledge, for the first time), which enable an improved quantification of simulation results. The obtained results include analysis of penetration depth, residual depth and recovery percentage related to indenter force and size. Our results show there is a clear effect from these parameters on the tribological properties. We also discuss a "crooked smile" effect on the scratched surface and the reasons for its appearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. The mechanical properties are mainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is focused on the establishment of relationships between the injection moulding processing conditions, the applied thermomechanical environment (TME) and the tensile properties of talc-filled polypropylene,adopting a new extended concept of thermomechanical indices (TMI). In this approach, TMI are calculated from computational simulations of the moulding process that characterise the TME during processing, which are then related to the mechanical properties of the mouldings. In this study, this concept is extended to both the filling and the packing phases, with new TMI defined related to the morphology developed during these phases. A design of experiments approach based on Taguchi orthogonal arrays was adopted to vary the injection moulding parameters (injection flow rate, injection temperature, mould wall temperature and holding pressure), and thus, the TME. Results from analysis of variance for injection-moulded tensile specimens have shown that among the considered processing conditions, the flow rate is the most significant parameter for the Young’s modulus; the flow rate and melt temperature are the most significant for the strain at break; and the holding pressure and flow rate are the most significant for the stress at yield. The yield stress and Young’s modulus were found to be governed mostly by the thermostress index (TSI, related to the orientation of the skin layer), whilst the strain at break depends on both the TSI and the cooling index (CI, associated to the crystallinity degree of the core region). The proposed TMI approach provides predictive capabilities of the mechanical response of injection-moulded components, which is a valuable input during their design stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of the electrical response of vapor grown carbon nanofiber (VGCNF) + epoxy composites is investigated by studying the electrical behavior of VGCNF with resin, VGCNF with hardener and cured composites, separately. It is demonstrated that the onset of the conductivity is associated to the emergence of a weak disorder regime. It is also shown that the weak disorder regime is related to a hopping depending on the physical properties of the polymer matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the population ageing effect, the technological developments, and pressure to reduce the cost with healthcare, are reunited the conditions for the development of Ambient Assisted Living (AAL) solutions. This work is a revision of the current state of the art. Its aim is the characterization of the AAL solutions, within the AAL4ALL scope. Therefore, it is presented features, scenarios and projects, referring the limitations and the opportunities for the future developments of prototypes using high level information and technology in AAL environments. Moreover, it is presented guidelines of operation, exposing the conceptual approach, and the discussion and conclusion, which present recommendations and current AAL4ALL project positions in terms of concepts and technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential increase of home-bound persons who live alone and are in need of continuous monitoring requires new solutions to current problems. Most of these cases present illnesses such as motor or psychological disabilities that deprive of a normal living. Common events such as forgetfulness or falls are quite common and have to be prevented or dealt with. This paper introduces a platform to guide and assist these persons (mostly elderly people) by providing multisensory monitoring and intelligent assistance. The platform operates at three levels. The lower level, denominated ‘‘Data acquisition and processing’’performs the usual tasks of a monitoring system, collecting and processing data from the sensors for the purpose of detecting and tracking humans. The aim is to identify their activities in an intermediate level called ‘‘activity detection’’. The upper level, ‘‘Scheduling and decision-making’’, consists of a scheduler which provides warnings, schedules events in an intelligent manner and serves as an interface to the rest of the platform. The idea is to use mobile and static sensors performing constant monitoring of the user and his/her environment, providing a safe environment and an immediate response to severe problems. A case study on elderly fall detection in a nursery home bedroom demonstrates the usefulness of the proposal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital thermal imaging has been employed in medicine for over 50 years. However, its use has been focused on vascular, musculoskeletal and neurological conditions, while other potential applications,such as obstetrics, have been much less explored. This paper presents a study conducted during 2011 at the Hospital of Braga on a group of healthy pregnant women in the last third of gestation. The analysis focused on characterizing typical pregnant women steady temperature profiles in specific defined regions of interest (ROI), and determining if the thermal symmetry values for late pregnant healthy women are in line with the values for non-pregnant healthy women. A temperature distribution pattern was found in the defined ROI. The obtained thermal symmetry value had a maximum of 0.370.2 1C, and there was no evidence for the influence of age (p40.05) in the observed group. The influence of the BMI requires further investigation since one ROI (P2 right) presented a p¼0.059, close to the threshold of statistical evidence in the influence of BMI. The study group presented symmetry values in line with non-pregnant reference values, but the profiles in temperature distribution are different. Assumptions can therefore now be used with higher confidence when assessing abnormalities in specific pathologic states during pregnancy using the defined ROI. This work represents a first contribution towards establishing guidelines for future research in this specific field of study.