20 resultados para Fatigue. Composites. Modular Network. S-N Curves Probability. Weibull Distribution
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
The success of artificial prosthetic replacements depends on the fixation of the artificial prosthetic component after being implanted in the thighbone. The materials for fixation are subject to mechanical stresses, which originate permanent deformations, incipient cracks and even fatigue fractures. This work shows the possibility of monitoring the mechanical stress over time in prosthesis. In this way, highly sensitive silicon thin-film piezoresistive sensors were developed attached to prosthesis and their results compared with commercial strain gauge sensors. Mechanical stress-strain experiments were performed in compressive mode, during 10,000 cycles. Experimental data was acquired at mechanical vibration frequencies of 0.5 Hz, 1 Hz and 5 Hz, and sent to a computer by means of a wireless link. The results show that there is a decrease in sensitivity of the thin-film silicon piezoresistive sensors when they are attached to the prosthesis, but this decrease does not compromise its monitoring performance. The sensitivity, compared to that of commercial strain gauges, is much larger due to their higher gauge factors (-23.5), when compared to the GFs of commercial sensors (2).
Resumo:
The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.
Resumo:
Purpose – Castings defects are usually easy to characterize, but to eradicate them can be a difficult task. In many cases, defects are caused by the combined effect of different factors, whose identification is often difficult. Besides, the real non-quality costs are usually unknown, and even neglected. This paper aims to describe the development of a modular tool for quality improvement in foundries, and its main objective is to present the application potential and the foundry process areas that are covered and taken into account. Design/methodology/approach – The integrated model was conceived as an expert system, designated Qualifound, which performs both qualitative and quantitative analyses. For the qualitative analyses mode, the nomenclature and the description of defects are based on the classification suggested by the International Committee of the Foundry Technical Association. Thus, a database of defects was established, enabling one to associate the defects with the relevant process operations and the identification of their possible causes. The quantitative analysis mode deals with the number of produced and rejected castings and includes the calculation of the non-quality costs. Findings – The validation of Qualifound was carried out in a Portuguese foundry, whose quality system had been certified according to the ISO 9000 standards. Qualifound was used in every management area and it was concluded that the application had the required technological requisites to provide the necessary information for the foundry management to improve process quality. Originality/value – The paper presents a successful application of an informatics tool on quality improvement in foundries.