20 resultados para Automatic segmentations
Resumo:
In medical emergency situations, when a patient needs a blood transfusion, the universal blood type O− is administered. This procedure may lead to the depletion of stock reserves of O− blood. Nowadays, there is no commercial equipment capable of determining the patient's blood type in situ, in a fast and reliable process. Human blood typing is usually performed through the manual test, which involves a macroscopic observation and interpretation of the results by an analyst. This test, despite of having a fast response time, may lead to human errors, which sometimes can be fatal to the patient. This paper presents the development of an automatic mechatronic prototype for determining human blood typing (ABO and Rh systems) through image processing techniques. The prototype design takes into account the characteristics of reliability of analysis, portability, and response time allowing the system to be used in emergency situations. The developed prototype performs blood and reagents mixture acquires the resultant image and processes the data (based on image processing techniques) to determine the sample blood type. It was tested in a laboratory, using cataloged samples of blood types, provided by the Portuguese Institute of Blood and Transplantation. Hereafter, it is expected to test and validate the prototype in clinical environments.
Resumo:
Regulating mechanisms of branchingmorphogenesis of fetal lung rat explants have been an essential tool formolecular research.This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development frommicroscopic images. Methods.Theouter contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to themanualmethod. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.
Resumo:
Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.
Resumo:
A montagem de circuitos eletrónicos é um processo extremamente complexo, e como tal muito difícil de controlar. Ao longo do processo produtivo, é colocada solda no PCB (printed circuit board), seguidamente são colocados os componentes eletrónicos que serão depois soldados através de um sistema de convecção, sendo por fim inspecionados todos os componentes, com o intuito de detetar eventuais falhas no circuito. Esta inspeção é efetuada por uma máquina designada por AOI (automatic optical inspection), que através da captura de várias imagens do PCB, analisa cada uma, utilizando algoritmos de processamento de imagem como forma de verificar a presença, colocação e soldadura de todos os componentes. Um dos grandes problemas na classificação dos defeitos relaciona-se com a quantidade de defeitos mal classificados que passam para os processos seguintes, por análise errada por parte dos operadores. Assim, apenas com uma formação adequada, realizada continuamente, é possível garantir uma menor taxa de falhas por parte dos operadores e consequentemente um aumento na qualidade dos produtos. Através da implementação da metodologia Gage R&R para atributos, que é parte integrante da estratégia “six sigma” foi possível analisar a aptidão dos operadores, com base na repetição aleatória de várias imagens. Foi desenvolvido um software que implementa esta metodologia na formação dos operadores das máquinas AOI, de forma a verificar a sua aptidão, tendo como objetivo a melhoria do seu desempenho futuro, através da medição e quantificação das dificuldades de cada pessoa. Com esta nova sistemática foi mais fácil entender a necessidade de formação de cada operador, pois com a constante evolução dos componentes eletrónicos e com o surgimento de novos componentes, estão implícitas novas dificuldades para os operadores neste tipo de tarefa. Foi também possível reduzir o número de defeitos mal classificados de forma significativa, através da aposta na formação com o auxílio do software desenvolvido.
Resumo:
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.