18 resultados para Aluminum matrix composites
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
The energy harvesting efficiency of electrospun poly(vinylidene fluoride), its copolymer vinylidene fluoride-trifluoroethylene and composites of the later with piezoelectric BaTiOon interdigitated electrodes has been investigated. Further, a study of the influence of the electrospinning processing parameters on the size and distribution of the composites fibers has been performed. It is found that the best energy harvesting performance is obtained for the pure poly(vinylidene fluoride) fibers, with power outputs up to 0.03 W and 25 W under low and high mechanical deformation. The copolymer and the composites show reduced power output due to increased mechanical stiffness. The obtained values, among the largest found in the literature, the easy processing and the low cost and robustness of the polymer, demonstrate the applicability of the developed system.
Resumo:
This work reports on the effect of carbon nanotube aggregation on the electrical conductivity and other network properties of polymer/carbon nanotube composites by modeling the carbon nanotubes as hard-core cylinders. It is shown that the conductivity decreases for increasing filler aggregation, and that this effect is more significant for higher cylinder volume fractions. It is also demonstrated, for volume fractions at which the giant component is present, that increasing the fraction of cylinders within clusters leads to a break of the giant component and the formation of a set of finite clusters. The decrease of the giant component with the increase of the fraction of cylinders within the cluster can be related to a decrease of the spanning probability due to a decrease of the number of cylinders between the clusters. Finally, it is demonstrated that the effect of aggregation can be understood by employing the network theory.