2 resultados para RESPIRATORY CHANGES

em Repositório da Universidade Federal do Espírito Santo (UFES), Brazil


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A transitory increase in blood pressure (BP) is observed following upper airway surgery for obstructive sleep apnea syndrome but the mechanisms implicated are not yet well understood. The objective of the present study was to evaluate changes in BP and heart rate (HR) and putative factors after uvulopalatopharyngoplasty and septoplasty in normotensive snorers. Patients (N = 10) were instrumented for 24-h ambulatory BP monitoring, nocturnal respiratory monitoring and urinary catecholamine level evaluation one day before surgery and on the day of surgery. The influence of postsurgery pain was prevented by analgesic therapy as confirmed using a visual analog scale of pain. Compared with preoperative values, there was a significant (P < 0.05) increase in nighttime but not daytime systolic BP (119 ± 5 vs 107 ± 3 mmHg), diastolic BP (72 ± 4 vs 67 ± 2 mmHg), HR (67 ± 4 vs 57 ± 2 bpm), respiratory disturbance index (RDI) characterized by apnea-hypopnea (30 ± 10 vs 13 ± 4 events/h of sleep) and norepinephrine levels (22.0 ± 4.7 vs 11.0 ± 1.3 µg l-1 12 h-1) after surgery. A positive correlation was found between individual variations of BP and individual variations of RDI (r = 0.81, P < 0.01) but not between BP or RDI and catecholamines. The visual analog scale of pain showed similar stress levels on the day before and after surgery (6.0 ± 0.8 vs 5.0 ± 0.9 cm, respectively). These data strongly suggest that the cardiovascular changes observed in patients who underwent uvulopalatopharyngoplasty and septoplasty were due to the increased postoperative RDI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.