3 resultados para Myocardial Doppler Velocity (mdv)

em Repositório da Universidade Federal do Espírito Santo (UFES), Brazil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no I Simpósio Mineiro de Ciências dos Materiais, Ouro Preto, Novembro de 2001.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Borderline hypertension (BH) has been associated with an exaggerated blood pressure (BP) response during laboratory stressors. However, the incidence of target organ damage in this condition and its relation to BP hyperreactivity is an unsettled issue. Thus, we assessed the Doppler echocardiographic profile of a group of BH men (N = 36) according to office BP measurements with exaggerated BP in the cycloergometric test. A group of normotensive men (NT, N = 36) with a normal BP response during the cycloergometric test was used as control. To assess vascular function and reactivity, all subjects were submitted to the cold pressor test. Before Doppler echocardiography, the BP profile of all subjects was evaluated by 24-h ambulatory BP monitoring. All subjects from the NT group presented normal monitored levels of BP. In contrast, 19 subjects from the original BH group presented normal monitored BP levels and 17 presented elevated monitored BP levels. In the NT group all Doppler echocardiographic indexes were normal. All subjects from the original BH group presented normal left ventricular mass and geometrical pattern. However, in the subjects with elevated monitored BP levels, fractional shortening was greater, isovolumetric relaxation time longer, and early to late flow velocity ratio was reduced in relation to subjects from the original BH group with normal monitored BP levels (P<0.05). These subjects also presented an exaggerated BP response during the cold pressor test. These results support the notion of an integrated pattern of cardiac and vascular adaptation during the development of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial infarction leads to compensatory ventricular remodeling. Disturbances in myocardial contractility depend on the active transport of Ca2+ and Na+, which are regulated by Na+-K+ ATPase. Inappropriate regulation of Na+-K+ ATPase activity leads to excessive loss of K+ and gain of Na+ by the cell. We determined the participation of Na+-K+ ATPase in ventricular performance early and late after myocardial infarction. Wistar rats (8-10 per group) underwent left coronary artery ligation (infarcted, Inf) or sham-operation (Sham). Ventricular performance was measured at 3 and 30 days after surgery using the Langendorff technique. Left ventricular systolic pressure was obtained under different ventricular diastolic pressures and increased extracellular Ca2+ concentrations (Ca2+e) and after low and high ouabain concentrations. The baseline coronary perfusion pressure increased 3 days after myocardial infarction and normalized by 30 days (Sham 3 = 88 ± 6; Inf 3 = 130 ± 9; Inf 30 = 92 ± 7 mmHg; P < 0.05). The inotropic response to Ca2+e and ouabain was reduced at 3 and 30 days after myocardial infarction (Ca2+ = 1.25 mM; Sham 3 = 70 ± 3; Inf 3 = 45 ± 2; Inf 30 = 29 ± 3 mmHg; P < 0.05), while the Frank-Starling mechanism was preserved. At 3 and 30 days after myocardial infarction, ventricular Na+-K+ ATPase activity and contractility were reduced. This Na+-K+ ATPase hypoactivity may modify the Na+, K+ and Ca2+ transport across the sarcolemma resulting in ventricular dysfunction.