3 resultados para Heat treatments

em Repositório da Universidade Federal do Espírito Santo (UFES), Brazil


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O consumo de suco de frutas vem aumentando no Brasil. Entre 2002 e 2009 o consumo de sucos, sejam eles concentrados, em pó, sucos ou néctares, aumentou em 21%. Devido ao seu sabor agradável e doce, e ao seu valor nutricional, o suco de laranja é o suco mais comum fabricado pela indústria de processamento de bebidas. Diversos fatores podem afetar a qualidade do suco de laranja. A microbiota típica presente no suco de laranja pode ser proveniente de várias etapas de sua produção. Em relação às enzimas, a pectinametilesterase (PME) é a principal causadora de alterações em suco laranja. A pasteurização e a esterilização comercial são os métodos de conservação mais comuns utilizados para inativar enzimas e micro-organismos, porém podem causar efeitos adversos em relação às características sensoriais (cor, sabor, aroma, e outros) dos produtos. A tecnologia de ultrassom vem sendo estudada recentemente como uma forma de conservar os alimentos sem causar efeitos indesejáveis como os provocados pelos tratamentos térmicos. O objetivo deste trabalho foi avaliar a utilização da tecnologia de ultrassom e de ultrassom aliado a temperaturas brandas, como forma de conservar suco de laranja. Para isto, foram analisadas a contagem de mesófilos totais e bolores e leveduras, a atividade da pectinametilesterase, o teor de vitamina C, a cor, o pH, o teor de sólidos solúveis e a estabilidade em relação à turbidez. Ainda, avaliou-se a aceitação sensorial de suco de laranja submetido à termossonicação. Os resultados foram comparados com os obtidos para o suco natural e o suco pasteurizado. Utilizou-se um ultrassom de 40 kHz, associado às temperaturas de 25 ºC, 30 ºC, 40 ºC, 50 ºC e 60 ºC durante 10 minutos. Os tratamentos utilizando ultrassom a 50 ºC e 60 ºC foram capazes de reduzir a contagem de bolores e leveduras e de mesófilos totais, apresentando uma redução de 3 ciclos logarítmicos. Resultado similar foi encontrado quando realizado o tratamento térmico a 90 ºC por 30 segundos. Observou-se que a aplicação da termossonicação permitiu uma redução significativa na atividade de PME e uma menor perda de vitamina C. O tratamento que apresentou melhor redução na atividade de PME foi utilizando ultrassom 40 kHz com temperatura de 60 ºC. Em relação ao ácido ascórbico, quanto menor a temperatura utilizada em conjunto com a sonicação, menor foi a perda deste composto. O teor de sólidos solúveis, o pH e a cor do suco não foram alterados ao longo do processamento. Avaliando a aceitabilidade do suco, verificou-se que a cor não foi influenciada por nenhum tratamento. Em relação ao aroma, sabor e aceitação global o suco submetido a termossonicação obteve aceitação sensorial superior à encontrada para o suco pasteurizado. Concluiu-se então que a utilização da termossonicação como uma forma de conservação para suco de laranja é viável.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visando a aplicação do aço UNS S32304 em embalados para transporte de material radioativo, amostras soldadas por processo TIG, com diferentes gases de proteção, foram submetidas a tratamentos térmicos nas temperaturas de 475°C, 600°C e 750°C por 8 horas, seguidas de resfriamento ao ar, a fim de analisar o efeito de temperaturas críticas no perfil de tensões residuais e microestrutura. A difratometria de raios X foi utilizada para determinação das tensões residuais, em diferentes condições (amostras como recebidas e apenas tratadas termicamente) e o perfil de tensões residuais total das amostras soldadas é apresentado para cada fase (austenita e ferrita). As tensões residuais das fases foram determinadas pela técnica sen2ψ, utilizando um difratômetro com fonte de radiação CuKα (<λ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Talvez não seja nenhum exagero afirmar que há quase um consenso entre os praticantes da Termoeconomia de que a exergia, ao invés de só entalpia, seja a magnitude Termodinâmica mais adequada para ser combinada com o conceito de custo na modelagem termoeconômica, pois esta leva em conta aspectos da Segunda Lei da Termodinâmica e permite identificar as irreversibilidades. Porém, muitas vezes durante a modelagem termoeconômica se usa a exergia desagregada em suas parcelas (química, térmica e mecânica), ou ainda, se inclui a neguentropia que é um fluxo fictício, permitindo assim a desagregação do sistema em seus componentes (ou subsistemas) visando melhorar e detalhar a modelagem para a otimização local, diagnóstico e alocação dos resíduos e equipamentos dissipativos. Alguns autores também afirmam que a desagregação da exergia física em suas parcelas (térmica e mecânica) permite aumentar a precisão dos resultados na alocação de custos, apesar de fazer aumentar a complexidade do modelo termoeconômico e consequentemente os custos computacionais envolvidos. Recentemente alguns autores apontaram restrições e possíveis inconsistências do uso da neguentropia e deste tipo de desagregação da exergia física, propondo assim alternativas para o tratamento de resíduos e equipamentos dissipativos que permitem a desagregação dos sistemas em seus componentes. Estas alternativas consistem, basicamente, de novas propostas de desagregação da exergia física na modelagem termoeconômica. Sendo assim, este trabalho tem como objetivo avaliar as diferentes metodologias de desagregação da exergia física para a modelagem termoeconômica, tendo em conta alguns aspectos como vantagens, restrições, inconsistências, melhoria na precisão dos resultados, aumento da complexidade e do esforço computacional e o tratamento dos resíduos e equipamentos dissipativos para a total desagregação do sistema térmico. Para isso, as diferentes metodologias e níveis de desagregação da exergia física são aplicados na alocação de custos para os produtos finais (potência líquida e calor útil) em diferentes plantas de cogeração considerando como fluido de trabalho tanto o gás ideal bem como o fluido real. Plantas essas com equipamentos dissipativos (condensador ou válvula) ou resíduos (gases de exaustão da caldeira de recuperação). Porém, foi necessário que uma das plantas de cogeração não incorporasse equipamentos dissipativos e nem caldeira de recuperação com o intuito de avaliar isoladamente o efeito da desagregação da exergia física na melhoria da precisão dos resultados da alocação de custos para os produtos finais.