3 resultados para Biocid and corrosion

em Repositório da Universidade Federal do Espírito Santo (UFES), Brazil


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mudança no mercado global do petróleo nos últimos anos, com o declínio das reservas de óleo leve, têm forçado a busca por novos campos petrolíferos em ambientes mais remotos, como nos campos localizados na camada pré-sal, e a exploração de óleos pesados que possuem elevado teor de ácidos naftênicos. Isso acarreta em grandes desafios para a previsão do desempenho de materiais frente às novas condições ambientais em que estão inseridos. No presente trabalho, o comportamento da corrosão do aço carbono AISI 1010 e do aço inoxidável AISI 316L foi estudado em soluções aquosas com elevado teor de cloreto e em solução de ácido naftênico ciclopentanóico a fim de ter melhor entendimento da ação dessas espécies no processo de corrosão e simular a corrosão pela água de produção na indústria petrolífera. Foram aplicadas as técnicas de potencial de circuito aberto, polarização potenciodinâmica, voltametria cíclica, espectroscopia de impedância eletroquímica, espectroscopia Raman, microscopia eletrônica de varredura e microscopia de força atômica, usadas, em cada caso, de acordo com a conveniência. O aumento da [Cl-] na faixa de 1,2–2,8 mol.L-1 não altera os processos catódicos e anódicos perto do Ecorr para os aços AISI 1010 e AISI 316L. Em condições de sobrepotenciais afastados do Ecorr, o aumento de [Cl-] aumenta os processos oxidativos de corrosão, o que é expresso pelas maiores densidades de corrente e carga anódica e aumento da perda de massa sofrida pelos eletrodos de ambos os aços. Portanto, os danos da corrosão são mais intensos quando se aumenta a [Cl-]. O aço AISI 1010 é ativo nas soluções de NaCl e a corrosão se propaga livremente de forma uniforme. Para o aço AISI 316L, uma ampla faixa de passividade pode ser vista nas soluções de NaCl; no Epit ocorre a ruptura do filme passivo e o crescimento de pites estáveis. Após 24 h de imersão em soluções de sulfato de sódio (branco) e de ácido naftênico ciclopentanóico ocorre crescimento de filme de óxido e as fases α-Fe2O3, Fe3O4 e δ-FeO(OH) foram identificadas nos espécimes de aço AISI 1010 e Fe3O4 foi identificado nos defeitos do filme prévio presente na superfície do aço AISI 316L. Os filmes formados em solução de ácido ciclopentanóico possuem menor resistência à polarização, maior rugosidade e maior taxa de corrosão quando comparado aos filmes crescidos na solução branco, para ambos os aços. A presença do ácido naftênico muda a forma como a reação de corrosão se procede e contribui para o aumento da corrosão. A corrosão naftênica foi mais pronunciada no aço carbono porque a presença dos elementos de liga no aço inox reduzem o número de sítios ativos ricos em Fe e tornam menos oportuna a ligação do Fe com o naftenato.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O comportamento da corrosão e inibição à corrosão dos aços carbono AISI 1010, inox AISI 316 e duplex UNS S31803 foi estudado em meio de solução de íons cloreto à 3,0% (m/v), na ausência e presença do benzimidazol e imidazol como inibidores. A caracterização química e morfológica dos aços foi realizada por meio das técnicas de espectrometria de emissão ótica, difração de raios X (DRX), microscopia ótica, microscopia eletrônica de varredura (MEV) e energia dispersiva de raios X (EDX). As análises eletroquímicas foram realizadas através das técnicas de polarização potenciodinâmica e espectroscopia de impedância eletroquímica. As análises de DRX e de metalografia mostraram as fases presentes em cada aço, sendo o aço AISI 1010 composto pela fase ferrita, o aço AISI 316 pelas fases de FeNi e Cr e o aço UNS S31803 pelas fases austenita e ferrita. Além disso, a metalografia e as análises de MEV e EDX permitiram identificar regiões e certos elementos presentes nos aços que propiciam à ocorrência da corrosão, tais como inclusões. Os inibidores foram testados em diferentes concentrações (25 ppm, 50 ppm, 100 ppm, 500 ppm e 1000 ppm) para os três aços, através das curvas de polarização e impedância eletroquímica, e verificou-se que para todas as concentrações houve aumento da resistência à corrosão dos aços. Pelas curvas de polarização verificou-se que o benzimidazol proporcionou aos aços AISI 1010, AISI 316 e UNS S31803, eficiências de inibição de cerca de 51%, 71% e 75%, respectivamente. Enquanto que o imidazol apresentou eficiência de cerca de 73%, 95% e 86%, respectivamente. Os resultados de impedância eletroquímica mostraram que as eficiências de inibição do benzimidazol foram de aproximadamente 52%, 73% e 71%, respectivamente, para os aços AISI 1010, AISI 316 e UNS S31803. E por sua vez, o imidazol apresentou eficiências de aproximadamente 96% para os aços AISI 1010 e AISI 316 e 85% para o aço UNS S31803. O teste de perda de massa mostrou que para o aço AISI 1010 tanto o benzimidazol quanto e o imidazol inibiram a corrosão, sendo que reduziram a corrosão em cerca de 17% e 24%, respectivamente. Nas análises das curvas de polarização em estudos com a água do mar observou-se que os inibidores foram menos eficientes do que em meio de solução de cloreto. O benzimidazol obteve eficiências de cerca de 14%, 50% e 33%, respectivamente, para os aços AISI 1010, AISI 316 e UNS S31803. Enquanto que o imidazol apresentou eficiências de aproximadamente 21%, 59% e 34%, respectivamente. Em todas as análises eletroquímicas e análise de perda de massa, o imidazol se mostrou o melhor inibidor para os aços estudados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os danos causados pelos processos corrosivos em equipamentos presentes nas refinarias de petróleo, durante as destilações, foram descritos inicialmente em 1920. Inúmeras são as referências reportando estudos de processos corrosivos envolvendo tanto os ácidos naftênicos como os compostos sulfurados; em contrapartida, raras são as fontes de estudo envolvendo simultaneamente ambos. Neste trabalho, escolheram-se dois tipos de óleos: um óleo A - com alto teor de enxofre e um petróleo B com elevada acidez. Fez-se então um blend 50/50 em volume obtendo assim o óleo C para verificar a influência tanto da acidez quanto dos teores de enxofre nos processos corrosivos pelos cortes destes óleos. Após a destilação das três amostras, os derivados obtidos foram caracterizados e submetidos aos testes laboratoriais de corrosão. Os cortes do petróleo A apresentaram teores de enxofre e taxas de corrosão crescentes em função do aumento da temperatura final dos derivados, apresentando uma corrosão máxima de 1,66 mm/ano e produtos de corrosão como troilita (FeS) e pirrota (Fe1-xS). As frações de B apresentaram altos valores de NAT na faixa de temperatura de 220-400 °C, enquanto as taxas de corrosão foram de 0,83 mm/ano para esta faixa de temperatura; os produtos de corrosão encontrados foram o óxido de ferro (Fe2O3) e goetite (α-FeOOH). Por fim, os derivados do blend C, apresentaram propriedades intermediárias aos cortes anteriores o que corroborou para taxas de corrosão menores de 0,50 mm/ano até uma temperatura de 300 °C, expondo assim, a eficiência em utilizar a técnica de misturas de petróleos para o refino.