2 resultados para pairing in nuclear matter

em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Due to its high volatility, medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system where doses of radioactive iodine are fractionated, using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon is effective for I2 capture for a large or small amount of substrate but its use is restricted due to its low flash point (150º C). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to increase the volume of natural activated carbon since it was not absorbed by SiO2 + Ag crystals. We concluded that, for an exhaust flow range of (306 4) m3/h, a double stage filter using SiO2 + Ag in the first stage and natural activated carbon in the second is sufficient to meet radiological safety requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS / IEN) has developed an ultrasonic technique to measure porosity in nuclear fuel pellets (UO2). By difficulties related to the handling of UO2 pellets, Alumina (Al2O3) pellets have been used in preliminary tests, until a methodology for tests with pellets of UO2 could be defined. In a previous work, in which a contact ultrasonic technique was used, good results were obtained to measure the porosity of Alumina pellets. In the current studies, it was found that the frequency spectrum of an ultrasonic pulse is very sensitive to the porosity of the medium in which it propagates. In order to define the most appropriate experimental apparatus for using immersion technique in future tests, two ultrasonic systems, available in LABUS, which permit to work with the ultrasonic pulse in the frequency domain were evaluated . One system was the Explorer II (Matec INSTRUMENTS) and the other the ultrasonic pulse generator Epoch 4 Plus (Panametrics) coupled with an oscilloscope TDS 3032B (Tektronix). For this evaluation, several frequency spectra were obtained with the two equipment, by the passage of the ultrasonic wave in the same pellet of Alumina. This procedure was performed on four different days, on each day 12 ultrasonic signals were acquired, one signal every 10 minutes, with each apparatus. The results were compared and analyzed as regard the repeatability of the frequency spectra obtained.