4 resultados para interplanetary scintillation (IPS)

em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In industrial plants, oil and oil compounds are usually transported by closed pipelines with circular cross-section. The use of radiotracers in oil transport and processing industrial facilities allows calibrating flowmeters, measuring mean residence time in cracking columns, locate points of obstruction or leak in underground ducts, as well as investigating flow behavior or industrial processes such as in distillation towers. Inspection techniques using radiotracers are non-destructive, simple, economic and highly accurate. Among them, Total Count, which uses a small amount of radiotracer with known activity, is acknowledged as an absolute technique for flow rate measurement. A viscous fluid transport system, composed by four PVC pipelines with 13m length (12m horizontal and 1m vertical) and ½, ¾, 1 and 2-inch gauges, respectively, interconnected by maneuvering valves was designed and assembled in order to conduct the research. This system was used to simulate different flow conditions of petroleum compounds and for experimental studies of flow profile in the horizontal and upward directions. As 198Au presents a single photopeak (411,8 keV), it was the radioisotope chosen for oil labeling, in small amounts (6 ml) or around 200 kBq activity, and it was injected in the oil transport lines. A NaI scintillation detector 2”x 2”, with well-defined geometry, was used to measure total activity, determine the calibration factor F and, positioned after a homogenization distance and interconnected to a standardized electronic set of nuclear instrumentation modules (NIM), to detect the radioactive cloud.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work was to develop, separately, methodology for production of two gaseous tracers through the sodium iodide NaI marked with 123I. Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. These two forms of the gaseous iodine, the methyl iodide, CH3I, and molecular iodine, I2, are very unstable and volatile in the ambient temperature and presents different problems in clean-up and monitoring systems. The syntheses were processed with sodium iodide (NaI) 1M aqueous solution marked with 123I. The production of gas I2 was realized with in chlorine acid (HCl) and sodium iodate salt (NaIO3) and the CH3I was used, the salt of NaI and the reagent (CH3)2SO4. The production of gases was initially realized through in unit in glass with an inert material and the purpose was to study the kinetic of reaction and to determine the efficiency of production. The two synthesis occurs in the reaction bottle and after of produced, the gas is stored in the collect bottle that contains a starch solution for fixed the I2, and in syntheses of CH3I contains a silver nitrate solution for your fixation. To determine the efficiency of production of gases, analytic tests were realized, where the consumption of iodide ions of the bottle of reaction are measured. The optimization of production of the each gaseous tracer was studied varying parameter as: concentration of iodide, concentration of acid and temperature. After, the syntheses of the radiotracers were realized in the compact unit, having been used as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine and methyl iodine was studied by a scintillation detector NaI (2 x 2)” positioned in the reaction bottle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, it was developed a methodology for the determination of the dispersion of a gaseous tracer in porous media using the radiotracer technique. In order to evaluate several porous media, a cylindrical filter was constructed in PVC and connected to a system with constant flow. Inside this unit silica crystals (16-20) mesh was used as porous media and CH3Br (Methyl Bromide) marked with 82Br was used as radiotracer. An instantaneous pulse of tracer was applied in the system entrance and registered by two NaI (3x3)” scintillation detectors located one before and the other after the filter. The curves produced by the radioactive cloud and recorded by the detector were analyzed statistically using the weighted moment method. The mathematical model one considered as great dispersion of tracer was used to evaluate the flow conditions inside the filter system. The results show us that the weight moment method associated with radiotracer techniques is useful to evaluated an industrial filter and allows to measure the residence time distribution, τ, and the axial dispersion, DAB, gas in a porous medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. The iodine is very unstable and volatile in the ambient temperature and the I2 is one of the diverse gaseous forms found. In this work was developed methodology for production of gaseous tracer from the sodium iodide (NaI) 0,1 M marked with 123I. The synthesis was processed with in chlorine acid (HCl) 1M and sodium iodate salt (NaIO3). The production of gas I2 initially was carried through in unit of glass with the inert material and the purpose was to study the kinetic of reaction. The synthesis occurs in the reaction bottle and the produced gas is stored in the collect bottle that contains a starch solution (5 g/100 mL water). To determine the efficiency of production of gas I2, analytic tests had been carried through, where the consumption of iodide ions of the bottle of reaction is measured. The optimization of production of the gaseous tracer was studied varying parameters as: concentration of iodide and iodate, concentration of acid and temperature. Then, the synthesis of the radiotracer was realized in the compact unit, being utilized as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine was studied by a scintillation detector NaI (2 x 2)” placed in the reaction bottle. To acquire the data, the detector use a set of electronic modules for the acquisition of signals generated.