2 resultados para hierarchical porous media
em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN
Resumo:
In this study, it was developed a methodology for the determination of the dispersion of a gaseous tracer in porous media using the radiotracer technique. In order to evaluate several porous media, a cylindrical filter was constructed in PVC and connected to a system with constant flow. Inside this unit silica crystals (16-20) mesh was used as porous media and CH3Br (Methyl Bromide) marked with 82Br was used as radiotracer. An instantaneous pulse of tracer was applied in the system entrance and registered by two NaI (3x3)” scintillation detectors located one before and the other after the filter. The curves produced by the radioactive cloud and recorded by the detector were analyzed statistically using the weighted moment method. The mathematical model one considered as great dispersion of tracer was used to evaluate the flow conditions inside the filter system. The results show us that the weight moment method associated with radiotracer techniques is useful to evaluated an industrial filter and allows to measure the residence time distribution, τ, and the axial dispersion, DAB, gas in a porous medium.
Resumo:
The main aim of this work is to develop a methodology to evaluate the characteristics of porous media in filter using the radio-tracing technique. To do this, an experimental prototype filter made up of an acrylic cylinder, vertically mounted and supported on the lower side by a controlled leaking valve was developed. Two filters (spheres of acrylic and silica crystals) were used to check the movement of the water through the porous media using 123I in its MIBG (iodine-123-meta-iodo benzyl-guanidine) form. Further up the filter an instantaneous injection of the substance makes it possible to see the passage of radioactive clouds through the two scintillatory detectors NaI (2x2)” positioned before and immediately after the cylinder with the filtering element (porous media). The are caused by the detectors on the passage of the radioactive cloud are analyzed through statistical functions using the weighted moment method which makes it possible to calculate the Residence-Time (the amount of time the tracer takes to thoroughly pass through the filter) per the equation of dispersion in tubular flow and the one-directional flow of the radiotracer in the porous media.