2 resultados para charged particle dynamics

em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this R&D work is to simulate particle beam optics in CV-28 Cyclotron of Instituto de Engenharia Nuclear – IEN/CNEN, as a support for improvements or optimization of this particle accelerator. Besides 2D magnetostatic field computation results, the authors present an alternative method for charged particle trajectories computation in electrostatic or magnetostatic fields. This task is approached by analytical computation of trajectories, by parts, considering constant fields within each finite element. This method has some advantages over numerical integration ones: numerical miscomputation of trajectories is avoided; stability problem is also avoided, for the magnetostatic field case. Some examples are presented, including positive ion extraction from cyclotrons with strip-foil. This latter technique is an interesting alternative for upgrading positive ion cyclotrons, such as CV-28 Cyclotron. The particle trajectory computation method presented in this work is of interest not only for cyclotrons, but for accelerator and related technology, in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work reports an alternative method for single non-relativistic charged particle trajectory computation in 2D electrostatic or magnetostatic fields. This task is approached by analytical computation of particle trajectory, by parts, considering the constant fields within each finite element. This method has some advantages over numerical integration ones: numerical miscomputation of trajectories, and stability problems can be avoided. Among the examples presented in this paper, an interesting alternative approach for positive ion extraction from cyclotrons is shown, using strip-foils. Other particle optics devices can benefit of a method such the one proposed in this paper, as beam bending devices, spectrometers, among others. This method can be extended for particle trajectory computation in 3D domains.