2 resultados para biofluid flow in the porous media
em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN
Resumo:
The main aim of this work is to develop a methodology to evaluate the characteristics of porous media in filter using the radio-tracing technique. To do this, an experimental prototype filter made up of an acrylic cylinder, vertically mounted and supported on the lower side by a controlled leaking valve was developed. Two filters (spheres of acrylic and silica crystals) were used to check the movement of the water through the porous media using 123I in its MIBG (iodine-123-meta-iodo benzyl-guanidine) form. Further up the filter an instantaneous injection of the substance makes it possible to see the passage of radioactive clouds through the two scintillatory detectors NaI (2x2)” positioned before and immediately after the cylinder with the filtering element (porous media). The are caused by the detectors on the passage of the radioactive cloud are analyzed through statistical functions using the weighted moment method which makes it possible to calculate the Residence-Time (the amount of time the tracer takes to thoroughly pass through the filter) per the equation of dispersion in tubular flow and the one-directional flow of the radiotracer in the porous media.
Resumo:
The present work is concerned with the use of the cross correlation technique to measure delay time between two simulated signals displaced with respect to time, in order to develop a cross correlator system that will be used to measure the water and oil pipes flowrate in which the detection system is composed by two external low intensity radiation sources located along the tube and two NaI(Tl) gamma-ray detectors. The final purpose of the correlator system is to use the natural disturbances, as the turbulence in the own flow rather than to inject radioactive tracers to the fluid flow as usually is carried out. In the design of this correlator is evaluated the point-by-point calculation method for the cross correlation function in order to produce a system accurate and fast. This method is divided at the same time in three modes of operation: direct, relay and polarity.