4 resultados para Fuel burnup (Nuclear engineering)

em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS / IEN) has developed an ultrasonic technique to measure porosity in nuclear fuel pellets (UO2). By difficulties related to the handling of UO2 pellets, Alumina (Al2O3) pellets have been used in preliminary tests, until a methodology for tests with pellets of UO2 could be defined. In a previous work, in which a contact ultrasonic technique was used, good results were obtained to measure the porosity of Alumina pellets. In the current studies, it was found that the frequency spectrum of an ultrasonic pulse is very sensitive to the porosity of the medium in which it propagates. In order to define the most appropriate experimental apparatus for using immersion technique in future tests, two ultrasonic systems, available in LABUS, which permit to work with the ultrasonic pulse in the frequency domain were evaluated . One system was the Explorer II (Matec INSTRUMENTS) and the other the ultrasonic pulse generator Epoch 4 Plus (Panametrics) coupled with an oscilloscope TDS 3032B (Tektronix). For this evaluation, several frequency spectra were obtained with the two equipment, by the passage of the ultrasonic wave in the same pellet of Alumina. This procedure was performed on four different days, on each day 12 ultrasonic signals were acquired, one signal every 10 minutes, with each apparatus. The results were compared and analyzed as regard the repeatability of the frequency spectra obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Database was generated during the development of a computer vision-based system for safety purposes in nuclear plants. The system aims at detecting and tracking people within a nuclear plant. Further details may be found in the related thesis. The research was developed through a cooperation between the Graduate Electrical Engineering Program of Federal University of Rio de Janeiro (PEE/COPPE, UFRJ) and the Nuclear Engineering Institute of National Commission of Nuclear Energy (IEN, CNEN). The experimental part of this research was carried out in Argonauta, a nuclear research reactor belonging to IEN. The Database is made available in the sequel. All the videos are already rectified. The Projection and Homography matrices are given in the end, for both cameras. Please, acknowledge the use of this Database in any publication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. Concerning the areas of applications, automobile, aeronautics, naval and even nuclear, the characteristics of these materials should be strictly controlled. In the nuclear area, ceramics are of great importance once they are the nuclear fuel pellets and must have, among other features, a well controlled porosity due to mechanical strength and thermal conductivity required by the application. Generally, the techniques used to characterize nuclear fuel are destructive and require costly equipment and facilities. This paper aims to present a nondestructive technique for ceramic characterization using ultrasound. This technique differs from other ultrasonic techniques because it uses ultrasonic pulse in frequency domain instead of time domain, associating the characteristics of the analyzed material with its frequency spectrum. In the present work, 40 Alumina (Al2O3) ceramic pellets with porosities ranging from 5% to 37%, in absolute terms measured by Archimedes technique, were tested. It can be observed that the frequency spectrum of each pellet varies according to its respective porosity and microstructure, allowing a fast and non-destructive association of the same characteristics with the same spectra pellets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system.