2 resultados para DFT calculation
em Instituto de Engenharia Nuclear, Brazil - Carpe dIEN
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.
Resumo:
With the objective to improve the reactor physics calculation on a 2D and 3D nuclear reactor via the Diffusion Equation, an adaptive automatic finite element remeshing method, based on the elementary area (2D) or volume (3D) constraints, has been developed. The adaptive remeshing technique, guided by a posteriori error estimator, makes use of two external mesh generator programs: Triangle and TetGen. The use of these free external finite element mesh generators and an adaptive remeshing technique based on the current field continuity show that they are powerful tools to improve the neutron flux distribution calculation and by consequence the power solution of the reactor core even though they have a minor influence on the critical coefficient of the calculated reactor core examples. Two numerical examples are presented: the 2D IAEA reactor core numerical benchmark and the 3D model of the Argonauta research reactor, built in Brasil.