10 resultados para Collaborative learning and applications
em Biblioteca Digital da Produ
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
This paper is devoted to the study of the class of continuous and bounded functions f : [0, infinity] -> X for which exists omega > 0 such that lim(t ->infinity) (f (t + omega) - f (t)) = 0 (in the sequel called S-asymptotically omega-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically omega-periodic functions. We also study the existence of S-asymptotically omega-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.
Resumo:
The paper considers the existence and uniqueness of almost automorphic mild solutions to some classes of first-order partial neutral functional-differential equations. Sufficient conditions for the existence and uniqueness of almost automorphic mild solutions to the above-mentioned equations are obtained. As an application, a first-order boundary value problem arising in control systems is considered. (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Context: Cannabis sativa use can impair verbal learning, provoke acute psychosis, and increase the risk of schizophrenia. It is unclear where C sativa acts in the human brain to modulate verbal learning and to induce psychotic symptoms. Objectives: To investigate the effects of 2 main psychoactive constituents of C sativa, Delta 9-tetrahydrocannabinol (Delta 9-THC) and cannabidiol, on regional brain function during verbal paired associate learning. Design: Subjects were studied on 3 separate occasions using a block design functional magnetic resonance imaging paradigm while performing a verbal paired associate learning task. Each imaging session was preceded by the ingestion of Delta 9-THC (10 mg), cannabidiol (600 mg), or placebo in a double-blind, randomized, placebo-controlled, repeated-measures, within-subject design. Setting: University research center. Participants: Fifteen healthy, native English-speaking, right-handed men of white race/ethnicity who had used C sativa 15 times or less and had minimal exposure to other illicit drugs in their lifetime. Main Outcome Measures: Regional brain activation ( blood oxygen level-dependent response), performance in a verbal learning task, and objective and subjective ratings of psychotic symptoms, anxiety, intoxication, and sedation. Results: Delta 9-Tetrahydrocannabinol increased psychotic symptoms and levels of anxiety, intoxication, and sedation, whereas no significant effect was noted on these parameters following administration of cannabidiol. Performance in the verbal learning task was not significantly modulated by either drug. Administration of Delta 9-THC augmented activation in the parahippocampal gyrus during blocks 2 and 3 such that the normal linear decrement in activation across repeated encoding blocks was no longer evident. Delta 9-Tetrahydrocannabinol also attenuated the normal time-dependent change in ventrostriatal activation during retrieval of word pairs, which was directly correlated with concurrently induced psychotic symptoms. In contrast, administration of cannabidiol had no such effect. Conclusion: The modulation of mediotemporal and ventrostriatal function by Delta 9-THC may underlie the effects of C sativa on verbal learning and psychotic symptoms, respectively.
Resumo:
Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1 rho imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage. (C)RSNA, 2011 , radiographics.rsna.org
Resumo:
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.