2 resultados para zoonoses
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Feces of 70 diarrhoeic and 230 non-diarrhoeic domestic cats from Sao Paulo, Brazil were investigated for enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and enterotoxigenic (ETEC) Escherichia coli types. While ETEC and EHEC strains were not found, 15 EPEC strains were isolated from 14 cats, of which 13 were non-diarrhoeic, and one diarrhoeic. None of 15 EPEC strains carried the bfpA gene or the EPEC adherence factor plasmid, indicating atypical EPEC types. The EPEC strains were heterogeneous with regard to intimin types, such as eae-theta (three strains), eae-kappa (n = 3), eae-alpha 1 (n = 2), eae-iota (n = 2), one eae-alpha 2, eae-beta 1 and eae-eta each, and two were not typeable. The majority of the EPEC isolates adhered to HEp-2 cells in a localized adherence-like pattern and were positive for fluorescence actin staining. The EPEC strains belonged to 12 different serotypes, including O111:H25 and O125:H6, which are known to be pathogens in humans. Multi locus sequence typing revealed a close genetic similarity between the O111:H25 and O125:H6 strains from cats, dogs and humans. Our results show that domestic cats are colonized by EPEC, including serotypes previously described as human pathogens. As these EPEC strains are also isolated from humans, a cycle of mutual infection by EPEC between cats and its households cannot be ruled out, though the transmission dynamics among the reservoirs are not yet understood clearly.
Resumo:
Five species of mycoplasma are associated with several rat diseases. Mycoplasma pulmonis is the most important and most studied, possibly causing disease in rats and undermining the validity of laboratory experiments. M. pulmonis was isolated in 144/240 laboratory rats and identified by PCR in 155/240. This species was also detected in 12 human individuals (technicians of a laboratory animal house hold) in contact with these rats. The results were confirmed by sequencing of DNA products. Mycoplasma species are host specific; however, M. pulmonis was identified in humans, suggesting a case of unspecific colonization. Statistical analysis shows a greater risk for M. pulmonis colonizing individuals who are exposed to infected rats in animal facilities than individuals who do not. The detection of M. pulmonis in humans indicates a new status for this mollicute mycoplasmas in animal-holding facilities.