9 resultados para yeasts and moulds
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.
Resumo:
Paracoccidioidomycosis is a systemic granulomatous disease manifested in the acute/subacute or chronic forms. The anergic cases of the acute/subacute form are most severe, leading to death threatening conditions. Drug treatment is required to control the disease but the response in anergic patients is generally poor. A 15-mer peptide from the major diagnostic antigen gp43, named P10, induces a T-CD4(+) helper-1 immune response in mice of different haplotypes and protects against intratracheal challenge with virulent P. brasiliensis. Presently, P10 immunization and chemotherapy were associated in an attempt to improve antifungal treatment in Balb/c mice made anergic by adding dexamethasone to the drinking water. The combined drug/peptide treatment significantly reduced the lung CFUs in infected anergic mice, largely preserved lung alveolar structure and prevented fungal dissemination to liver and spleen. Results recommend that a P10-based vaccine should be associated to chemotherapy for improved treatment of paracoccidioidomycosis aiming especially at anergic cases. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Resumo:
Ethnopharmacological importance: Many species of plants in the Brazilian cerrado (savanna) are widely used in ethnomedicine. However, the safety and effectiveness of medicinal plants used in communities with little or no access to manufactured drugs should be evaluated. Aim of the study: Evaluate the antimicrobial and cytotoxic activities of extracts from eight plant species, obtained using Brazilian cachaca as the extractor liquid. Materials and methods: The extracts were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Candida parapsilosis, promastigote forms of Leishmania amazonensis, and poliovirus. In addition, cytotoxic activity was assayed in Vero cells and in human erythrocytes. Results: The plant species Curatella americana, Sclerolobium aureum, and Plathymenia reticulata showed the best activity against yeasts, especially the crude extract of C. americana and its ethyl-acetate fraction. Kielmeyera lathrophyton showed a minimum inhibitory concentration of 250 mu g/ml against S. aureus, and was inactive against Gram-negative bacteria. The extract obtained from Annona coriacea showed the best activity against the promastigote forms of Leishmania amazonensis (IC(50) = 175 mu g/ml). Only C. americana showed potential for antipoliovirus activity. The concentrations of the crude extracts that showed toxicity to VERO cells had CC(50) between 31 and 470 mu g/ml, and the lyophilized Brazilian cachaca showed a CC(50) of 307 mu g/ml. None of the extracts showed toxicity against human erythrocytes. Conclusions: Among the plant species studied. C americana proved to be effective against microorganisms, especially as an antifungal. The results will help in the search for alternative drugs to be used in pharmacotherapy, and will contribute to establish safe and effective use of phytomedicines in the treatment of infectious diseases. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The essential oils isolated by hydrodistillation from trunk bark and leaves of Talauma ovata A. St. Hil. (Magnoliaceae), collected in four seasons, were analyzed by capillary GC and GC/MS. Altogether 52 components were identified, The oils were characterized by predominance of cyclic sesquiterpenes. The main components were linalool, trans-beta-guaiene, germaerene D, germacrene B, spathulenol, caryophyllene oxide, viridiflorol and alpha-endesmol. The content of individual components was variable during the year. All oils were screened against several strains of bacteria and yeasts, using the agar well-diffusion technique. The antimicrobial activity of oils showed strong dependence with the season. Significant activity was found for oils obtained in the spring and summer.
Resumo:
Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.
Resumo:
The aim of this study was to investigate the effects of nutrients (nitrogen, zinc and boron) on fungal growth and fumonisins production in corn samples obtained at the beginning of grain formation and at harvest. Three nitrogen doses were applied to the corn plants through soil in combination with three zinc doses and two boron doses during sowing. Mycological analysis of grains, using Dichloran Rose-Bengal Chloramphenicol Agar, collected at the beginning of formation demonstrated a fungal population predominantly of yeasts. Analysis of freshly harvested corn revealed a higher frequency of Penicillium spp. (72%) and F verticillioides (27%). High Performance Liquid Chromatography analysis revealed that 100% of grains were contaminated with fumonisins B, at levels ranging from 0.3 to 24.3 mg/kg and 93% contaminated with fumonisin B(2) at levels ranging from 0.05 to 5.42 mg/kg. Nitrogen (50 kg/ha) in combination with boron (0.5 kg/ha) resulted in an increased fumonisin B2 production. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and AM inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high-and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K-m, 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.
Resumo:
Although the production of patulin in apple fruits is mainly by Penicillium expansum, there is no information on the ability of heat resistant moulds that may survive pasteurization to produce this mycotoxin in juice packages during storage and distribution. In this study, the production of patulin by Byssochlamys spp (Byssochlamys nivea FRR 4421, B. nivea ATCC 24008 and Byssochlamys fulva IOC 4518) in cloudy and clarified apple juices packaged in laminated paperboard packages or in polyethylene terephthalate bottles (PET) and stored at both 21 degrees C and 30 degrees C, was investigated. The three Byssochlamys strains were able to produce patulin in both cloudy and clarified apple juices. Overall, the lower the storage temperature, the lower the patulin levels and mycelium dry weight in the apple juices (p<0.05). The greatest variations in pH and degrees Brix were observed in the juices from which the greatest mycelium dry weights were recovered. The maximum levels of patulin recovered from the juices were ca. 150 mu g/kg at 21 degrees C and 220 mu g/kg at 30 degrees C. HPLC-UV, HPCL-DAD and mass spectrometry analyses confirmed the ability of B. fulva IOC 4518 to produce patulin. Due to the heat resistance of B. nivea and B. fulva and their ability to produce patulin either in PET bottles or in laminated paperboard packages, the control of contamination and the incidence of these fungi should be a matter of concern for food safety. Control measures taken by juice industries must also focus on controlling the ascospores of heat resistant moulds. (C) 2010 Elsevier B.V. All rights reserved.