2 resultados para wire rod

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical coupling provided by connexins (Cx) in gap junctions (GJ) plays important roles in both the developing and the mature retina. In mammalian nocturnal species, Cx36 is an essential component in the rod pathway, the retinal circuit specialized for night, scotopic vision. Here, we report the expression of Cx36 in a species (Gallus gallus) that phylogenetic development endows with an essentially rodless retina. Cx36 gene is very highly expressed in comparison with other Cxs previously described in the adult retina, such as Cx43, Cx45, and Cx50. Moreover, real-time PCR, Western blot, and immunofluorescence all revealed that Cx36 expression massively increased over time during development. We thoroughly examined Cx36 in the inner and outer plexiform layers, where this protein was particularly abundant. Cx36 was observed mainly in the off sublamina of the inner plexiform layer rather than in the on sublamina previously described in the mammalian retina. In addition, Cx36 colocalized with specific cell markers, revealing the expression of this protein in distinct amacrine cells. To investigate further the involvement of Cx36 in visual processing, we examined its functional regulation in retinas from dark-adapted animals. Light deprivation markedly up-regulates Cx36 gene expression in the retina, resulting in an increased accumulation of the protein within and between cone synaptic terminals. In summary, the developmental regulation of Cx36 expression results in particular circuitry-related roles in the chick retina. Moreover, this study demonstrated that Cx36 onto- and phylogenesis in the vertebrate retina simultaneously exhibit similarities and particularities. J. Comp. Neurol. 512:651-663, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rod bipolar cells in Cebus apella monkey retina were identified by an antibody against the alpha isoform of protein kinase C (PKC alpha). which has been shown to selectively identify rod bipolars in two other primates and various mammals. Vertical sections were used to confirm the identity of these cells by their characteristic morphology of dendrites and axons. Their topographic distribution was assessed in horizontal sections; counts taken along the dorsal, ventral, nasal, and temporal quadrants. The density of rod bipolar cells increased from 500 to 2900 cells/mm(2) at 1 mm from the fovea to reach a peak of 10,000-12,000 cellss/mm(2) at 4 mm, approximately 5 deg of eccentricity, and then gradually decreased toward retinal periphery to values of 5000 cells/mm(2) or less. Rod to rod bipolar density ratio remained between 10 and 20 across most of the retinal extension. The number of rod bipolar cells per retina was 6,360,000 +/- 387,433 (mean +/- S.D., n = 6). The anti-PKC alpha antibody has shown to be a good marker of rod bipolar cells of Cebus, and the cell distribution is similar to that described for other primates. In spite of the difference in the central retina, the density variation of rod bipolar cells in the Cebus and Macaca as well as the convergence from rod to rod bipolar cells are Generally similar, suggesting that both retinae stabilize similar sensitivity (as measured by rod density) and convergence.