35 resultados para wing shape
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Wing diagnostic characters for Culex quinquefasciatus and Culex nigripalpus (Diptera, Culicidae). Culex quinquefasciatus and Culex nigripalpus are mosquitoes of public health interest, which can occur sympatrically in urban and semi-urban localities. Morphological identification of these species may be difficult when specimens are not perfectly preserved. In order to suggest an alternative taxonomical diagnosis, wings of these species were comparatively characterized using geometric morphometrics. Both species could be distinguished by wing shape with accuracy rates ranging from 85-100%. Present results indicate that one can identify these species relying only on wing characters when traditional taxonomical characters are not visible.
Resumo:
A detecção do sexo de mosquitos da família Culicidae é importante em estudos faunísticos e epidemiológicos, pois somente as fêmeas possuem competência vetora para patógenos. O dimorfismo sexual de genitália e de apêndices cefálicos é, em geral, facilmente visível em culicídeos. As asas também podem ser dimórficas e assim poderiam complementar o procedimento de sexagem. No entanto, tal distinção não é facilmente notável à observação direta. Visando descrever formalmente o dimorfismo sexual alar em Aedes scapularis, um culicídeo vetorialmente competente para arbovírus e filárias, asas de machos e fêmeas foram comparadas usando-se métodos de morfometria geométrica e análise estatística multivariada. Nestas análises, populações dos municípios São Paulo e Pariquera-Açu (Estado de São Paulo) foram amostradas. A forma das asas mostrou evidente dimorfismo sexual, o que permitiu um índice de acurácia de 100% em testes-cegos de reclassificação, independentemente da origem geográfica. Já o tamanho alar foi sexualmente dimórfico apenas na população de São Paulo. Aparentemente, a forma alar é evolutivamente mais estável que o tamanho, interpretação que está de acordo com a teoria de Dujardin (2008b), de que a forma alar de insetos seria composta por caracteres genéticos quantitativos e pouco influenciada por fatores não-genéticos, enquanto que o tamanho alar seria predominantemente determinado por plasticidade decorrente de influências ambientais.
Resumo:
Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil
Resumo:
OBJECTIVES: to produce evidence of the validity and reliability of the Body Shape Questionnaire (BSQ) - a tool for measuring an individual's attitude towards his or her body image. METHODS: the study covered 386 young people of both sexes aged between 10 and 18 from a private school and used self-applied questionnaires and anthropometric evaluation. It evaluated the internal consistency, the discriminant validity for differences from the means, according to nutritional status (underweight, eutrophic, overweight and obese), the concurrent validity by way of Spearman's correlation coefficient between the scale and the Body Mass Index (BMI), the waist-hip circumference ratio (WHR) and the waist circumference (WC). Reliability was tested using Wilcoxon's Test, the intraclass correlation coefficient and the Bland-Altman figures. RESULTS: the BSQ displayed good internal consistency (±=0.96) and was capable of discriminating among the total population, boys and girls, according to nutritional status (p<0.001). It correlated with the BMI (r=0.41; p<0.001), WHR (r=-0.10; p=0.043) and WC (r=0.24; p<0.001) and its reliability was confirmed by intraclass correlation (r=0.91; p<0.001) for the total population. The questionnaire was easy to understand and could be completed quickly. CONCLUSIONS: the BSQ presented good results, thereby providing evidence of its validity and reliability. It is therefore recommended for evaluation of body image attitudes among adolescents.
Resumo:
The stingless bee Melipona beecheii presents great variability and is considered a complex of species. In order to better understand this species complex, we need to evaluate its diversity and develop methods that allow geographic traceability of the populations. Here we present a fast, efficient, and inexpensive means to accomplish this using geometric morphometrics of wings. We collected samples from Mexico, Guatemala, El Salvador, Nicaragua, and Costa Rica and we were able to correctly assign 87.1% of the colonies to their sampling sites and 92.4% to their haplotype. We propose that geometric morphometrics of the wing could be used as a first step analysis leaving the more expensive molecular analysis only to doubtful cases.
Gender identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology
Resumo:
Currently, the identification of pollinators is a critical necessity of conservation programs. After it was found that features extracted from patterns of wing venation are sufficient to discriminate among insect species, various studies have focused on this structure. We examined wing venation patterns of males and workers of five stingless bee species in order to determine if there are differences between sexes and if these differences are greater within than between species. Geometric morphometric analyses were made of the forewings of males and workers of Nannotrigona testaceicornis, Melipona quadrifasciata, Frieseomelitta varia, and Scaptotrigona aff. depilis and Plebeia remota. The patterns of males and workers from the same species were more similar than the patterns of individuals of the same sex from different species, and the patterns of both males and workers, when analyzed alone, were sufficiently different to distinguish among these five species. This demonstrates that we can use this kind of analysis for the identification of stingless bee species and that the sex of the individual does not impede identification. Computer-assisted morphometric analysis of bee wing images can be a useful tool for biodiversity studies and conservation programs.
Resumo:
Context. Observations in the cosmological domain are heavily dependent on the validity of the cosmic distance-duality (DD) relation, eta = D(L)(z)(1+ z)(2)/D(A)(z) = 1, an exact result required by the Etherington reciprocity theorem where D(L)(z) and D(A)(z) are, respectively, the luminosity and angular diameter distances. In the limit of very small redshifts D(A)(z) = D(L)(z) and this ratio is trivially satisfied. Measurements of Sunyaev-Zeldovich effect (SZE) and X-rays combined with the DD relation have been used to determine D(A)(z) from galaxy clusters. This combination offers the possibility of testing the validity of the DD relation, as well as determining which physical processes occur in galaxy clusters via their shapes. Aims. We use WMAP (7 years) results by fixing the conventional Lambda CDM model to verify the consistence between the validity of DD relation and different assumptions about galaxy cluster geometries usually adopted in the literature. Methods. We assume that. is a function of the redshift parametrized by two different relations: eta(z) = 1+eta(0)z, and eta(z) = 1+eta(0)z/(1+z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we consider the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical (isothermal) and spherical (non-isothermal) beta models. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. It was found that the elliptical beta model is in good agreement with the data, showing no violation of the DD relation (PDF peaked close to eta(0) = 0 at 1 sigma), while the spherical (non-isothermal) one is only marginally compatible at 3 sigma. Conclusions. The present results derived by combining the SZE and X-ray surface brightness data from galaxy clusters with the latest WMAP results (7-years) favors the elliptical geometry for galaxy clusters. It is remarkable that a local property like the geometry of galaxy clusters might be constrained by a global argument provided by the cosmic DD relation.
Resumo:
Hepatitis C virus (HCV) infects 170 million people worldwide, and is a major public health problem in Brazil, where over 1% of the population may be infected and where multiple viral genotypes co-circulate. Chronically infected individuals are both the source of transmission to others and are at risk for HCV-related diseases, such as liver cancer and cirrhosis. Before the adoption of anti-HCV control measures in blood banks, this virus was mainly transmitted via blood transfusion. Today, needle sharing among injecting drug users is the most common form of HCV transmission. Of particular importance is that HCV prevalence is growing in non-risk groups. Since there is no vaccine against HCV, it is important to determine the factors that control viral transmission in order to develop more efficient control measures. However, despite the health costs associated with HCV, the factors that determine the spread of virus at the epidemiological scale are often poorly understood. Here, we sequenced partial NS5b gene sequences sampled from blood samples collected from 591 patients in Sao Paulo state, Brazil. We show that different viral genotypes entered Sao Paulo at different times, grew at different rates, and are associated with different age groups and risk behaviors. In particular, subtype 1b is older and grew more slowly than subtypes 1a and 3a, and is associated with multiple age classes. In contrast, subtypes 1a and 3b are associated with younger people infected more recently, possibly with higher rates of sexual transmission. The transmission dynamics of HCV in Sao Paulo therefore vary by subtype and are determined by a combination of age, risk exposure and underlying social network. We conclude that social factors may play a key role in determining the rate and pattern of HCV spread, and should influence future intervention policies.
Resumo:
Hard-scattered parton probes produced in collisions of large nuclei indicate large partonic energy loss, possibly with collective produced-medium response to the lost energy. We present measurements of pi(0) trigger particles at transverse momenta p(T)(t) = 4-12 GeV/c and associated charged hadrons (p(T)(a) = 0.5-7 GeV/c) vs relative azimuthal angle Delta phi in Au + Au and p + p collisions at root s(NN) = 200 GeV. The Au + Au distribution at low p(T)(a), whose shape has been interpreted as a medium effect, is modified for p(T)(t) < 7 GeV/c. At higher p(T)(t), the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p(T)(a), which quantitatively challenges some medium response models. The associated yield of hadrons opposing the trigger particle in Au + Au relative to p + p (I(AA)) is suppressed at high p(T) (I(AA) approximate to 0.35-0.5), but less than for inclusive suppression (R(AA) approximate to 0.2).
Resumo:
We propose a physically transparent analytic model of astrophysical S factors as a function of a center-of-mass energy E of colliding nuclei (below and above the Coulomb barrier) for nonresonant fusion reactions. For any given reaction, the S(E) model contains four parameters [two of which approximate the barrier potential, U(r)]. They are easily interpolated along many reactions involving isotopes of the same elements; they give accurate practical expressions for S(E) with only several input parameters for many reactions. The model reproduces the suppression of S(E) at low energies (of astrophysical importance) due to the shape of the low-r wing of U(r). The model can be used to reconstruct U(r) from computed or measured S(E). For illustration, we parametrize our recent calculations of S(E) (using the Sao Paulo potential and the barrier penetration formalism) for 946 reactions involving stable and unstable isotopes of C, O, Ne, and Mg (with nine parameters for all reactions involving many isotopes of the same elements, e. g., C+O). In addition, we analyze astrophysically important (12)C+(12)C reaction, compare theoretical models with experimental data, and discuss the problem of interpolating reliably known S(E) values to low energies (E less than or similar to 2-3 MeV).
Resumo:
A recent analysis of the (12)C + (24)Mg scattering [W. Sciani et al., Phys. Rev. C 80, 034319 (2009)] suggests the existence of a hyperdeformed band in the (36)Ar nucleus, completely in line with the predictions of alpha [W. D. M. Rae and A. C. Merchant, Phys. Lett. B279, 207 (1992)] and binary cluster calculations [J. Cseh et al., Phys. Rev. C 70, 034311 (2004)]. Here we review the structural understanding of the superdeformed and the hyperdeformed states of (36)Ar and present new results on the shape isomers as well. Special attention is paid to the clusterization of these states, which indicates the appropriate reaction channels for their formation.
Resumo:
We study quasinormal modes and scattering properties via calculation of the S matrix for scalar and electromagnetic fields propagating in the background of spherically symmetric and axially symmetric traversable Lorentzian wormholes of a generic shape. Such wormholes are described by the general Morris-Thorne ansatz. The properties of quasinormal ringing and scattering are shown to be determined by the behavior of the wormhole's shape function b(r) and shift factor Phi(r) near the throat. In particular, wormholes with the shape function b(r), such that b(dr) approximate to 1, have very long-lived quasinormal modes in the spectrum. We have proved that the axially symmetric traversable Lorentzian wormholes, unlike black holes and other compact rotating objects, do not allow for superradiance. As a by-product we have shown that the 6th order WKB formula used for scattering problems of black or wormholes gives quite high accuracy and thus can be used for quite accurate calculations of the Hawking radiation processes around various black holes.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.