44 resultados para wet bonding
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Hydrophilic dentin adhesives are prone to water sorption that adversely affects the durability of resin-dentin bonds. This study examined the feasibility of bonding to dentin with hydrophobic resins via the adaptation of electron microscopy tissue processing techniques. Hydrophobic primers were prepared by diluting 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane/triethyleneglycol dimethacrylate resins with known ethanol concentrations. They were applied to acid-etched moist dentin using an ethanol wet bonding technique that involved: (1) stepwise replacement of water with a series of increasing ethanol concentrations to prevent the demineralized collagen matrix from collapsing; (2) stepwise replacement of the ethanol with different concentrations of hydrophobic primers and subsequently with neat hydrophobic resin. Using the ethanol wet bonding technique, the experimental primer versions with 40, 50, and 75% resin exhibited tensile strengths which were not significantly different from commercially available hydrophilic three-step adhesives that were bonded with water wet bonding technique. The concept of ethanol wet bonding may be explained in terms of solubility parameter theory. This technique is sensitive to water contamination, as depicted by the lower tensile strength results from partial dehydration protocols. The technique has to be further improved by incorporating elements of dentin permeability reduction to avoid water from dentinal tubules contaminating water-free resin blends during bonding. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res 84A: 19-29, 2008.
Resumo:
The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wet-bonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pre-treated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds.
Resumo:
Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the effects of surface moisture (wet or dry) and storage (24h or 3 months) on the microtensile bond strength (BS) of resin/dentin bonds mediated by two water/ethanol based adhesives Single Bond, 3M-ESPE, (SB) and Opti Bond Solo Plus, Kerr, (OB), and two acetone-based adhesives, One Step, Bisco, (OS) and Prime&Bond NT, Caulk/Dentsply, (PB). Materials and methods. Flat dentin surfaces were polished with 600-grit SiC paper, etched with 35% phosphoric acid for 15 s and rinsed for 20 s. Half the surface was maintained moist and the other half was air-dried for 30 s. Each adhesive was applied simultaneously to both halves, left undisturbed for 30 s and light-cured. Four-mm resin build-ups were constructed incrementally. After storage in water at 37 degrees C for 24h, slabs were produced by transversal sectioning and trimmed to an hourglass shape (0.8 mm 2). Half of the specimens were tested in tension at 0.6 mm/min immediately after trimming and the other half after 3 months of water storage. Data were analyzed by two-way ANOVA and SNK for each material. Results. Both moisture and storage affected BS to dentin, and was material- dependent. Dry, bonding affected mostly the acetone-based adhesives. Larger reductions in bond strength were associated with dry bonding after 3 months of water storage. Significance. Wet bonding resulted in more stable bonds over 3 months of water storage for most of the materials tested. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Methods: Molars were randomly assigned to 6 treatment groups (n = 5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1 = 50%, 70%, 80%, 95% and 3 x 100%, 30 s for each application; group 2 the same ethanol sequence with 15 s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30 s step, respectively. After dehydration, a primer (50% BisGMA + TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24 h, sectioned into beams and stressed to failure after 24 h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n = 5 per subgroup). Results: Group 1 showed higher bond strengths at 24 h or after 6 months of ageing (45.6 +/- 5.9(a)/43.1 +/- 3.2(a) MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2 +/- 3.3(ab)/38.3 +/- 4.0(ab) MPa), group 2 (40.0 +/- 3.1(ab)/38.6 +/- 3.2(ab) MPa), and group 3 at 24 h (35.5 +/- 4.3(ab) MPa). Groups 4 (34.6 +/- 5.7(bc)/25.9 +/- 4.1(c) MPa) and 5 (24.7 +/- 4.9(c)/18.2 +/- 4.2(c) MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Conclusions: Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effect of oxalate during total-etch bonding, under different dentin moisture conditions, over time. The null hypothesis tested was that microtensile bond strength (mu TBS) was not affected by oxalate treatment and dentin moisture during two evaluation periods. Methods: Extracted human third molars had their mid-coronal dentin exposed flat and polished with 600-grit SiC paper. The surfaces were etched with 35% phosphoric acid for 15 seconds, washed and blot dried. After etching, a 3% potassium oxalate gel was applied for 120 seconds, except for the control group (no desensitizer). The surface was then washed and left moist (Wet bonding) or air-dried for 30 seconds (Dry bonding). The surfaces were bonded with: (I) two 2-step etch-and-rinse adhesives: Single Bond (SB); Prime & Bond NT (PBNT) and (2) one 3-step etch-and-rinse adhesive: Scotchbond Multi Purpose (SBMP). Composite buildups were constructed incrementally with Tetric Ceram resin composite. Each increment was cured for 40 seconds. After storage in water for 24 hours or 1 year at 37 C, the specimens were prepared for mu TBS testing with a cross-sectional area of approximately 1 mm(2). They were then tested in tension in an Instron machine at 0.5 mm/minute. Data were analyzed by ANOVA and Student-Newman-Keuls at alpha = 0.05. Results: Application of potassium oxalate had no significant effect on the bond strengths of SBMP and PBNT, regardless of the surface moisture condition (P > 0.05). Conversely, reduced bond strengths were observed after oxalate treatment for SB in both moisture conditions, that being significantly lower when using a dry-bonding procedure (P < 0.05). Lower bond strength was obtained for PBNT when a dry-bonding technique was used, regardless of the oxalate treatment (P < 0.05). After aging the specimens for 1 year, bond strengths decreased. Smaller reductions were observed for SBMP, regardless of moisture conditions. For the WB technique, smaller reductions after 1 year were observed without oxalate treatment for SB and after oxalate treatment for PBNT. (Am J Dent 2010;23:137-141).
Resumo:
Purpose: To evaluate the influence of dentin moisture on bond strengths of an etch-and-rinse bonding agent to primary dentin clinically and in the laboratory. Methods: The sample consisted of two groups of 20 caries-free primary second molars: molars in exfoliation period (clinical group) and extracted molars (laboratory group). Class I cavities were prepared in all specimens leaving a flat dentin surface on the pulpal floor. A two-step etch-and-rinse adhesive was vigorously rubbed on either dry (n= 5) or wet demineralized dentin (n= 5) under clinical or laboratory conditions. After restorative procedures, the teeth from the clinical group were extracted after 20 minutes. All samples were processed and underwent microtensile bond strength test and silver nitrate uptake evaluation under scanning electron microscopy. Results: Statistically higher bond strength values were observed when the bonding was performed under laboratory conditions and on a wet demineralized dentin. Most of the failures were adhesive and mixed irrespective of the experimental condition. Silver nitrate uptake occurred in all groups irrespective of the experimental condition. Resin-dentin bond strengths produced in the laboratory in primary teeth may overestimate those produced under clinical circumstances. (Am J Dent 2011;24:221-225).
Resumo:
Objectives: This study tested the following null hypotheses: (1) there is no difference in resin-dentine bond strength when an experimental glutaraldehyde primer solution is added prior to bonding procedures and (2) there is no difference in resin-dentine bond strength when experimental glutaraldehyde/adhesive system is applied under dry or wet demineralized dentine conditions. Methods: Extracted human maxillary third molars were selected. Flat, mid-coronal dentine was exposed for bonding and four groups were formed. Two groups were designated for the dry and two for the wet dentine technique: DRY: (1) Group GD: acid etching + glutaraldehyde primer (primer A) + HEMA/ethanol primer (primer B)-under dried dentine + unfilled resin; (2) Group D: the same as GD, except for primer A application; WET: (3) Group GW: the same as GD, but primer B was applied under wet dentine condition; (4) Group W: the same as GW, except for primer A application. The bonding resin was light-cured and a resin core was built up on the adhesive layer. Teeth were then prepared for microtensile bond testing to evaluate bond strength. The data obtained were submitted to ANOVA and Tukey`s test (alpha = 0.05). Results: Glutaraldehyde primer application significantly improved resin-dentine bond strength. No significant difference was observed when the same experimental adhesive system was applied under either dry or wet dentine conditions. These results allow the first null hypothesis to be rejected and the second to be accepted. Conclusion: Glutaraldehyde may affect demineralized dentine properties leading to improved resin bonding to wet and dry substrates. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this report, we describe a rapid and reliable process to bond channels fabricated in glass substrates. Glass channels were fabricated by photolithography and wet chemical etching. The resulting channels were bonded against another glass plate containing a 50-mu m thick PDMS layer. This same PDMS layer was also used to provide the electrical insulation of planar electrodes to carry out capacitively coupled contactless conductivity detection. The analytical performance of the proposed device was shown by using both LIF and capacitively coupled contactless conductivity detection systems. Efficiency around 47 000 plates/m was achieved with good chip-to-chip repeatability and satisfactory long-term stability of EOF. The RSD for the EOF measured in three different devices was ca. 7%. For a chip-to-chip comparison, the RSD values for migration time, electrophoretic current and peak area were below 10%. With the proposed approach, a single chip can be fabricated in less than 30 min including patterning, etching and sealing steps. This fabrication process is faster and easier than the thermal bonding process. Besides, the proposed method does not require high temperatures and provides excellent day-to-day and device-to-device repeatability.
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
The purpose of this study was to evaluate the dentin shear bond strength of four adhesive systems (Adper Single Bond 2, Adper Prompt L-Pop, Magic Bond DE and Self Etch Bond) in regards to buccal and lingual surfaces and dentin depth. Forty extracted third molars had roots removed and crowns bisected in the mesiodistal direction. The buccal and lingual surfaces were fixed in a PVC/acrylic resin ring and were divided into buccal and lingual groups assigned to each selected adhesive. The same specimens prepared for the evaluation of superficial dentin shear resistance were used to evaluate the different depths of dentin. The specimens were identified and abraded at depths of 0.5, 1.0, 1.5 and 2.0 mm. Each depth was evaluated by ISO TR 11405 using an EMIC-2000 machine regulated at 0.5 mm/min with a 200 Kgf load cell. We performed statistical analyses on the results (ANOVA, Tukey and Scheffé tests). Data revealed statistical differences (p < 0.01) in the adhesive and depth variation as well as adhesive/depth interactions. The Adper Single Bond 2 demonstrated the highest mean values of shear bond strength. The Prompt L-Pop product, a self-etching adhesive, revealed higher mean values compared with Magic Bond DE and Self Etch Bond adhesives, a total and self-etching adhesive respectively. It may be concluded that the shear bond strength of dentin is dependent on material (adhesive system), substrate depth and adhesive/depth interaction.
Resumo:
This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.
Resumo:
The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (?=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.
Resumo:
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.