51 resultados para viscosity-modifying agent
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Chemical admixtures increase the theological complexity of cement pastes owing to their chemical and physical interactions with particles, which affects cement hydration and agglomeration kinetics. Using oscillatory rheometry and isothermal calorimetry, this article shows that the cellulose ether HMEC (hydroxymethyl ethylcellulose), widely used as a viscosity modifying agent in self-compacting concretes and dry-set mortars, displayed a steric dispersant barrier effect during the first 2 h of hydration associated to a cement retarding nature, consequently reducing the setting speed. However, despite this stabilization effect, the polymer increased the cohesion strength when comparing cement particles with the same hydration degree. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
We report three new rickettsiosis human cases in Uruguay. The three clinical cases presented clinical manifestations similar to previous reported cases of Rickettsia parkeri in the United States; that is mild fever (< 40 ºC), malaise, headache, rash, inoculation eschar at the tick bite site, regional lymphadenopathy, and no lethality. Serological antibody-absorption tests with purified antigens of R. parkeri and Rickettsia rickettsii, associated with immunofluorescence assay indicated that the patients in two cases were infected by R. parkeri. Epidemiological and clinical evidences, coupled with our serological analysis, suggest that R. parkeri is the etiological agent of human cases of spotted fever in Uruguay, a disease that has been recognized in that country as cutaneous-ganglionar rickettsiosis.
Resumo:
Leishmaniasis is a neglected disease and endemic in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate the effect of RT-01, an organotellurane compound presenting biological activities, in 2 experimental systems against Leishmania amazonensis. The in vitro system consisted of promastigotes and amastigotes forms of the parasite, and the in vivo system consisted of L. amazonensis infected BALB/c mice, an extremely susceptible mouse strain. The compound proved to be toxic against promastigotes and amastigotes. The study also showed that treatment with RT-01 produces an effect similar to that treatment with the reference antimonial drug, Glucantime, in L. amazonensis infected mice. The best results were obtained following RT-01 intralesional administration (720 mu g/kg/day); mice showed significant delay in the development of cutaneous lesions and decreased numbers of parasites obtained from the lesions. Significant differences in tissue pathology consisted mainly of no expressive accumulation of inflammatory cells and well-preserved structures in the skin tissue of RT-01-treated mice compared with expressive infiltration of infected cells replacing the skin tissue in lesions of untreated mice. These findings highlight the fact that the apparent potency of organotellurane compounds, together with their relatively simple structure, may represent a new avenue for the development of novel drugs to combat parasitic diseases.
Resumo:
It is shown that, for accretion disks, the height scale is a constant whenever hydrostatic equilibrium and the subsonic turbulence regime hold in the disk. In order to have a variable height scale, processes are needed that contribute an extra term to the continuity equation. This contribution makes the viscosity parameter much greater in the outer region and much smaller in the inner region. Under these circumstances, turbulence is the presumable source of viscosity in the disk.
Resumo:
Ticlopidine hydrochloride (TICLID (R)) is a platelet antiaggregating agent whose use as a potent antithrombotic pharmaceutical ingredient is widespread, even though this drug has not been well characterized in the solid state. Only the crystal phase used for drug product manufacturing is known. Here, a new polymorph of ticlopidine hydrochloride was discovered and its structure was determined. While the antecedent polymorph crystallizes in the triclinic space group P (1) over bar, the new crystal phase was solved in the monoclinic space group P2(1)/c. Both polymorphs crystallize as racemic mixtures of enantiomeric (ticlopidine)(+) cations. Detailed geometrical and packing comparisons between the crystal structures of the two polymorphs have allowed us to understand how different supramolecular architectures are assembled. It was feasible to conclude that the main difference between the two polymorphs is a rotation of about 120 degrees on the bridging bond between the thienopyridine and o-chlorobenzyl moieties. The differential o-chlorobenzyl conformation is related to changeable patterns of weak intermolecular contacts involving this moiety, such as edge-to-face Cl center dot center dot center dot pi and C-H center dot center dot center dot pi interactions in the new polymorph and face-to-face pi center dot center dot center dot pi contacts in the triclinic crystal phase, leading to a symmetry increase in the ticlopidine hydrochloride solid state form described for the first time in this study. Other conformational features are slightly different between the two polymorphs, such as the thienopyridine puckerings and the o-chlorophenyl orientations. These conformational characteristics were also correlated to the crystal packing patterns.
Resumo:
Moniliophthora perniciosa is the causal agent of the witches` broom disease of cacao. Based on available genomic sequences, we identified 30 new microsatellite loci, which were analysed using 50 isolates from four populations sampled over a wide geographical area in Brazil, including three populations from the Amazon, the fungal putative centre of diversity, plus one from Bahia. Nine loci were polymorphic, with an average of 2.9 alleles per locus. The level of polymorphism observed was low, but these markers may allow the evaluation of pathogen diversity and the establishment of molecular standards for isolate fingerprinting to support cacao breeding.
Resumo:
This paper proposes a simple high-level programming language, endowed with resources that help encoding self-modifying programs. With this purpose, a conventional imperative language syntax (not explicitly stated in this paper) is incremented with special commands and statements forming an adaptive layer specially designed with focus on the dynamical changes to be applied to the code at run-time. The resulting language allows programmers to easily specify dynamic changes to their own program`s code. Such a language succeeds to allow programmers to effortless describe the dynamic logic of their adaptive applications. In this paper, we describe the most important aspects of the design and implementation of such a language. A small example is finally presented for illustration purposes.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
Witches` broom is a severe disease of Theobroma cacao L. (cacao), caused by the basidiomycete Moniliophthora perniciosa. The use of resistant cultivars is the ultimate method of control, but there are limited sources of resistance. Further, resistance from the most widely used source (`Scavina 6`) has been overcome after a few years of deployment. New sources of resistance have been intensively searched for in the Amazon basin. Here, we evaluated for witches` broom resistance, cacao accessions from various natural cacao populations originally collected in the Brazilian Amazon. Resistance of 43 families was evaluated under nursery and/or field conditions by artificial or natural infection, respectively, based on disease incidence. Screening for resistance by artificial inoculation under nursery conditions appeared to be efficient in identifying these novel resistance sources, confirmed by natural field evaluation over a nine-year period. The increase in natural field infection of `Scavina 6` was clearly demonstrated. Among the evaluated families with the least witches` broom incidence, there were accessions originally collected from distinct river basins, including the Jamari river (`CAB 0371`; `CAB 0388`; `CAB 0392`; and `CAB 0410`); Acre (`CAB 0169`); Javari (`CAB 0352`); Solimes (`CAB 0270`); and from the Purus river basin, the two most outstanding resistant accessions, `CAB 0208` and `CAB 0214`. The large genetic diversity found in cacao populations occurring at river basins from Acre and Amazonas states, Brazil, increased the chance that the selected resistant accessions would be genetically more dissimilar, and represent distinct sources of resistance to M. perniciosa from `Scavina 6`.
Resumo:
From a genomic enriched library, we developed 27 primer pairs from microsatellite flanking sequences for Colletotrichum acutatum, associated to postbloom fruit drop disease on citrus. Loci were characterized using 40 monosporic C. acutatum isolates. Nine primer pairs successfully amplified polymorphic microsatellite regions, with 3-6 alleles per locus, and mean heterozygosities ranging 0.093-0.590 across loci. The suitability of these primers was investigated in four Colletotrichum species as well. These microsatellite markers will be useful for genetic analyses and epidemiological studies of C. acutatum.
Resumo:
Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.
Resumo:
Citrus post-bloom fruit drop (caused by Colletotrichum acutatum) frequently occurs in the southwestern region of So Paulo State, Brazil. A survey of Colletotrichum isolates associated with symptoms of post-bloom fruit drop in So Paulo State showed C. gloeosporioides in addition to C. acutatum. The objectives of this study were to confirm the identification of C. gloeosporioides isolated from symptomatic citrus flowers, to test the pathogenicity of C. gloeosporioides isolates, to compare the development of disease caused by C. gloeosporioides and C. acutatum, and to determine the frequency of C. gloeosporioides in a sample of isolates obtained from symptomatic flowers in different regions of So Paulo State. Through the use of species-specific primers by PCR, 17.3% of 139 isolates were C. gloeosporioides, and the remaining 82.7% were C. acutatum. The pathogenicity tests, carried out in 3-year old potted plants of sweet oranges indicated that both species caused typical symptoms of the disease including blossom blight and persistent calyces. Incubation periods (3.5 and 3.9 days, respectively, for C. acutatum and C. gloeosporioides) and fruit sets (6.7 and 8.5%, respectively for C. acutatum and C. gloeosporioides) were similar for both species. The incidences of blossom blight and persistent calyces were higher on plants inoculated with C. acutatum than in those inoculated with C. gloeosporioides. Conidial germination was similar for both species under different temperatures and wetness periods. Under optimal conditions, appressorium formation and melanisation were higher for C. gloeosporioides than for C. acutatum. These results indicated that Colletotrichum gloeosporioides is a new causal agent of post-bloom fruit drop.