39 resultados para vertical flat plate
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A solar energy powered failing film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO(2), making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO(2) from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector. and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For the optimal design of plate heat exchangers (PHEs), an accurate thermal-hydraulic model that takes into account the effect of the flow arrangement on the heat load and pressure drop is necessary. In the present study, the effect of the flow arrangement on the pressure drop of a PHE is investigated. Thirty two different arrangements were experimentally tested using a laboratory scale PHE with flat plates. The experimental data was used for (a) determination of an empirical correlation for the effect of the number of passes and number of flow channels per pass on the pressure drop; (b) validation of a friction factor model through parameter estimation; and (c) comparison with the simulation results obtained with a CFD (computational fluid dynamics) model of the PHE. All three approaches resulted in a good agreement between experimental and predicted values of pressure drop. Moreover, the CFD model is used for evaluating the flow maldistribution in a PHE with two channels Per Pass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVES: The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. MATERIAL AND METHODS: Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey's post-hoc test (p<0.05). RESULTS: Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. CONCLUSIONS: The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface.
Resumo:
OBJETIVO: avaliar as possíveis alterações e a estabilidade dentária e esquelética no sentido transversal, bem como as possíveis alterações verticais da face (AFAI), produzidas pela Expansão Rápida da Maxila Assistida Cirurgicamente (ERMAC). MÉTODOS: a amostra selecionada para este estudo retrospectivo foi composta por 60 telerradiografias em norma frontal, de 15 pacientes, sendo 6 do gênero masculino e 9 do gênero feminino, com média de idades de 23 anos e 3 meses. O disjuntor Hyrax foi instalado e o procedimento cirúrgico adotado envolveu a separação da sutura palatina mediana e não-abordagem da sutura pterigomaxilar. A ativação foi realizada do terceiro dias após a cirurgia até o término da expansão, determinada por critérios clínicos. Todos os pacientes foram radiografados nas fases pré-expansão (T1); pós-expansão imediata (T2); 3 meses pós-expansão, com o próprio disjuntor como contenção (T3); e 6 meses pós-expansão, com a placa removível de acrílico como contenção (T4). Medidas lineares foram obtidas a partir dos traçados cefalométricos gerados por um programa computadorizado (Radiocef Studio 2) e analisadas estatisticamente pelos testes de variância (ANOVA) e Tukey ao nível de 5% de significância. RESULTADOS E CONCLUSÕES: concluiu-se que a ERMAC produziu aumentos estatisticamente significativos da cavidade nasal, da largura maxilar e da distância intermolares superiores, de T1 para T2, os quais se mantiveram em T3 e T4. A largura facial e as distâncias intermolares inferiores não apresentaram alterações após a ERMAC. Avaliando o comportamento vertical da face, notou-se um aumento da AFAI nas fases T1 para T2, que diminuiu após a contenção de 3 meses (T3) e permaneceu estável em T4, embora aumentada se comparada com T1.
Resumo:
The aim of this study was to evaluate in situ changes in the alveolar crest bone height around immediate implant-supported crowns in comparison to tooth-supported crowns (control) with the cervical margins located at the bone crest level, without occlusal load. In Group I, after extraction of 12 mandibular premolars from 4 adult dogs, implants from Branemark System (MK III TiU RP 4.0 x 11.5 mm) were placed to retain complete acrylic crowns. In Group II, premolars were prepared to receive complete metal crowns. Sixteen weeks after placement of the crowns (38 weeks after tooth extraction), the height of the alveolar bone crest was measured with a digital caliper. Data were analyzed statistically by the Mann-Whitney test at 5% significance level. The in situ analysis showed no statistically significant difference (p=0.880) between the implant-supported and the tooth-supported groups (1.528 + 0.459 mm and 1.570 + 0.263 mm, respectively). Based on the findings of the present study, it may be concluded that initial peri-implant bone loss may result from the remodeling process necessary to establish the biological space, similar to which occurs with tooth-supported crowns.
Resumo:
This study investigated whether there is a direct correlation between the level of vertical misfit at the abutment/implant interface and torque losses (detorque) in abutment screws. A work model was obtained from a metal matrix with five 3.75 x 9 mm external hex implants with standard platform (4.1 mm). Four frameworks were waxed using UCLA type abutments and one-piece cast in commercially pure titanium. The misfit was analyzed with a comparator microscope after 20 Ncm torque. The highest value of misfit observed per abutment was used. The torque required to loose the screw was evaluated using a digital torque meter. The torque loss values, measured by the torque meter, were assumed as percentage of initial torque (100%) given to abutment screws. Pearson's correlation (α=0.05) between the misfit values (29.08 ± 8.78 µm) and the percentage of detorque (50.71 ± 11.37%) showed no statistically significant correlation (p=0.295). Within the limitations of this study, it may be concluded that great vertical misfits dot not necessarily implies in higher detorque values.
Resumo:
Neste artigo, investiga-se a adoção de canais alternativos para a comercialização de produtos agrícolas como forma de atenuar o poder, cada vez maior, exercido pelas grandes redes varejistas. O artigo investiga a decisão - e os efeitos daí decorrentes - de uma determinada empresa sediada no interior paulista, agrícola Pedra Branca, quanto à operacionalização verticalizada de uma butique de frutas, legumes e verduras (FLVs). Consciente dos novos padrões demandados pelo consumidor, a estratégia da empresa alvo do estudo foi combinar a oferta regular de produtos frescos, de qualidade intrínseca padronizada e preços atrativos, a um serviço diferenciado, baseado em um alto valor na experiência de compra. Esta estratégia fundamenta-se no anseio dos consumidores de, mais do que simplesmente adquirir produtos, experimentar sensações, as quais vividas em momentos de lazer exerceriam um grande poder de diferenciação. Realizou-se um estudo de caso baseado em entrevistas em profundidade semiestruturadas com diretores e gerentes da empresa. Como resultado, as evidências empíricas sugerem: 1) a verticalização (integração vertical) da atividade de comercialização como uma alternativa para a apropriação de valor da produção ao longo do canal de distribuição; e 2) o desafio da gestão do suprimento como requisito-chave para a adequada gestão do valor de uma marca. Considera-se oportuno lembrar, porém, que, em decorrência das limitações próprias da metodologia de estudos de caso, estas tais evidências devem ser entendidas como proposição a ser testada em trabalhos quantitativos futuros, ou mesmo melhor embasada via condução de estudos multicaso.
Resumo:
INTRODUÇÃO: em alguns casos, a extração de pré-molares torna-se necessária e nem sempre os espaços são completamente fechados após o alinhamento e nivelamento. O arco de dupla chave, ou Double Key Loop (DKL), é um arco retangular de aço para retração, com duas alças - uma mesial e outra distal ao canino. OBJETIVOS: este trabalho propôs-se a estudar o local onde a força é exercida, após a ativação desse arco, utilizando ativação na alça distal, ativação entre as alças e na alça distal, e ativação com Gurin®. MÉTODOS: foram montados nove modelos fotoelásticos de um arco dentário inferior, sem os primeiros pré-molares e os terceiros molares, com braquetes In-Ovation e arco DKL. O arco foi ativado e a região de incisivos, caninos e dentes posteriores foi fotografada, com interposição de filtros polarizadores de luz. RESULTADOS E CONCLUSÕES: após a análise do modelo fotoelástico, concluiu-se que a ativação com Gurin® pode produzir movimento de retração anterior com componente extrusivo; a ativação na alça distal pode produzir movimento de retração anterior sem componente extrusivo; e a ativação entre as alças e na alça distal pode produzir movimento de retração anterior com componente intrusivo.
Resumo:
We discuss the dynamics of the Universe within the framework of the massive graviton cold dark matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the cosmic microwave background shift parameter, and the baryonic acoustic oscillations as traced by the Sloan Digital Sky Survey red luminous galaxies. The linear evolution of small density fluctuations is also analyzed in detail. It is found that the growth factor of the MGCDM model is slightly different (similar to 1-4%) from the one provided by the conventional flat Lambda CDM cosmology. The growth rate of clustering predicted by MGCDM and Lambda CDM models are confronted to the observations and the corresponding best fit values of the growth index (gamma) are also determined. By using the expectations of realistic future x-ray and Sunyaev-Zeldovich cluster surveys we derive the dark matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Lambda CDM models provide a halo redshift distribution departing significantly from the those predicted by other dark energy models. These results suggest that the MGCDM model can observationally be distinguished from Lambda CDM and also from a large number of dark energy models recently proposed in the literature.
Resumo:
Aims. This work investigates the properties (metallicity and kinematics) and interfaces of the Galactic thick disc as a function of height above the Galactic plane. The main aim is to study the thick disc in a place where it is the main component of the sample. Methods. We take advantage of former astrometric work in two fields of several square degrees in which accurate proper motions were measured down to V-magnitudes of 18.5 in two directions, one near the north galactic pole and the other at a galactic latitude of 46 degrees and galactic longitude near 0 degrees. Spectroscopic observations have been acquired in these two fields for a total of about 400 stars down to magnitude 18.0, at spectral resolutions of 3.5 to 6.25 angstrom. The spectra have been analysed with the code ETOILE, comparing the target stellar spectra with a grid of 1400 reference stellar spectra. This comparison allowed us to derive the parameters effective temperature, gravity, [Fe/H] and absolute magnitude for each target star. Results. The Metallicity Distribution Function (MDF) of the thin-thick-disc-halo system is derived for several height intervals between 0 and 5 kpc above the Galactic plane. The MDFs show a decrease of the ratio of the thin to thick disc stars between the first and second kilo-parsec. This is consistent with the classical modelling of the vertical density profile of the disc with 2 populations with different scale heights. A vertical metallicity gradient, partial derivative[Fe/H]/partial derivative z = -0.068 +/- 0.009 dex kpc(-1), is observed in the thick disc. It is discussed in terms of scenarios of formation of the thick disc.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation.
Resumo:
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.