3 resultados para truncated projective space

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we compute the fundamental group of each connected component of the function space of maps from it closed surface into the projective space

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the 1-parameter Wecken problem versus the restricted Wecken problem, for coincidence free pairs of maps between surfaces. For this we use properties of the function space between two surfaces and of the pure braid group on two strings of a surface. When the target surface is either the 2-sphere or the torus it is known that the two problems are the same. We classify most pairs of homotopy classes of maps according to the answer of the two problems are either the same or different when the target is either projective space or the Klein bottle. Some partial results are given for surfaces of negative Euler characteristic. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we determine the lower central and derived series for the braid groups of the projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is interesting in its own right. The n-string braid groups B(n)(RP(2)) of the projective plane RP(2) were originally studied by Van Buskirk during the 1960s. and are of particular interest due to the fact that they have torsion. The group B(1)(RP(2)) (resp. B(2)(RP(2))) is isomorphic to the cyclic group Z(2) of order 2 (resp. the generalised quaternion group of order 16) and hence their lower central and derived series are known. If n > 2, we first prove that the lower central series of B(n)(RP(2)) is constant from the commutator subgroup onwards. We observe that Gamma(2)(B(3)(RP(2))) is isomorphic to (F(3) X Q(8)) X Z(3), where F(k) denotes the free group of rank k, and Q(8) denotes the quaternion group of order 8, and that Gamma(2)(B(4)(RP(2))) is an extension of an index 2 subgroup K of P(4)(RP(2)) by Z(2) circle plus Z(2). As for the derived series of B(n)(RP(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group B(n)(RP(2)) being finite and soluble for n <= 2, the critical cases are n = 3, 4. We are able to determine completely the derived series of B(3)(RP(2)). The subgroups (B(3)(RP(2)))((1)), (B(3)(RP(2)))((2)) and (B(3)(RP(2)))((3)) are isomorphic respectively to (F(3) x Q(8)) x Z(3), F(3) X Q(8) and F(9) X Z(2), and we compute the derived series quotients of these groups. From (B(3)(RP(2)))((4)) onwards, the derived series of B(3)(RP(2)), as well as its successive derived series quotients, coincide with those of F(9). We analyse the derived series of B(4)(RP(2)) and its quotients up to (B(4)(RP(2)))((4)), and we show that (B(4)(RP(2)))((4)) is a semi-direct product of F(129) by F(17). Finally, we give a presentation of Gamma(2)(B(n)(RP(2))). (C) 2011 Elsevier Inc. All rights reserved.