4 resultados para trimethoprim
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ajoene has been described as an antithrombotic, anti-tumour, antifungal, antiparasitic and antibacterial agent. This study deals with the efficacy of ajoene to treat mice intratracheally infected with Paracoccidioides brasiliensis. The results indicate that ajoene therapy is effective in association with antifungal drugs (sulfametoxazol/trimethoprim), showing a positive additive effect. Ajoene-treated mice developed Th1-type cytokine responses producing higher levels of IFN-gamma and IL-12 when compared to the infected but untreated members of the control group. Antifungal activity of ajoene involves a direct effect on fungi and a protective pro-inflammatory immune response. Reduction of fungal load is additive to chemotherapy and therefore the combined treatment is mostly effective against experimental paracoccidioidomycosis.
Resumo:
A clinical Klebsiella pneumoniae isolate carrying the extended-spectrum beta-lactamase gene variants bla(SHV-40), bla(TEM-116) and bla(GES-7) was recovered. Cefoxitin and ceftazidime activity was most affected by the presence of these genes and an additional resistance to trimethoprim-sulphamethoxazole was observed. The bla(GES-7) gene was found to be inserted into a class 1 integron. These results show the emergence of novel bla(TEM) and bla(SHV) genes in Brazil. Moreover, the presence of class 1 integrons suggests a great potential for dissemination of bla(GES) genes into diverse nosocomial pathogens. Indeed, the bla(GES-7) gene was originally discovered in Enterobacter cloacae in Greece and, to our knowledge, has not been reported elsewhere.
Resumo:
Objective: To investigate the microbial etiology of suppurative chronic otitis media (SCOM) in patients with complete cleft lip and palate and isolated cleft palate and to determine the sensitivity of isolated microorganisms to antibiotics by drug diffusion from impregnated discs in agar and the minimum inhibitory concentration of each drug to these microorganisms by drug dilution in agar. Design/Patients: Effusion samples of SCOM obtained from 40 patients with cleft lip and palate registered at the Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, at Bauru, Brazil, were bacteriologically analyzed by cultures. The isolated bacteria were submitted to an in vitro susceptibility test to clinically used drugs. Results: Positive cultures were obtained in 100% of studied cases. Among the 57 strains observed, the most frequent were Pseudomonas aeruginosa (35%), Staphylococcus aureus (15.5%), Enterococcus faecalis (14%), and Proteus mirabilis (12%). The frequency of Gram-negative bacilli (enterobacteriaceae and nonfermentative bacilli) was 67%. Pseudomonas aeruginosa presented the highest sensitivity to ciprofloxacin, and enterobacteriaceae exhibited the highest sensitivity to gentamicin. The strains of S. aureus and E. faecalis presented the highest sensitivity to imipenem and sulfamethoxazole/trimethoprim, respectively. Conclusion: Patients with cleft lip and palate presenting with SCOM exhibited 100% positive cultures, with the highest frequency of Pseudomonas and enterobacteriaceae. With regard to the action of antibiotics, imipenem was effective against the four species of isolated microorganisms, followed by ciprofloxacin, which was effective against 75% of isolated species.
Resumo:
Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund`s adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 mu g, 5 mu g, 10 mu g, 20 mu g or 40 mu g center dot 50 mu L-1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) was more effective than `free` P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 mu g center dot 50 mu L-1) were most effective. Treatment with P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1) or P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect.