28 resultados para training and jobs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
The purpose of our study was to determine if vascular Occlusion produced an additive effect on muscle hypertrophy and strength performance with high strength training loads. Sixteen physically active men were divided into two groups: high-intensity (HI = 6 RM) and moderate-intensity training (MI = 12 RM). An occlusion cuff was attached to the proximal end of the right thigh, so that blood flow was reduced during the exercise. The left leg served as a control, thus was trained without vascular occlusion. Knee extension 1 RM and quadriceps cross-sectional area (MRI) were evaluated pre- and post-8 weeks of training. We only found a main time effect for both strength gains and quadriceps hypertrophy (p < 0.001). Therefore, we conclude that vascular occlusion in combination with high-intensity strength training does not augment muscle strength or hypertrophy when compared to high-intensity strength training alone.
Resumo:
This paper presents the results of a study on the analysis of training needs regarding environmental (green) management and climate change topics in micro and small enterprises (MSEs) in Brazil and its implications on education for sustainable development. It reports on an e-mail survey of Brazilian small enterprises, whose results indicate that they are indeed interested in environmental management and climate change topics in an education for sustainable development context. The study indicates that proposals for courses on environmental management and climate change should follow a systemic perspective and take sustainable development into account. By applying factor analysis, it was found that the topics of interest can be grouped into thematic modules, which can be useful in the design of training courses for the top management leaders of those companies.
Resumo:
In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.
Resumo:
Deminice, R, Sicchieri, T, Mialich, MS, Milani, F, Ovidio, PP, and Jordao, AA. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. J Strength Cond Res 25(3): 798-804, 2011-We have studied circuit resistance schemes with high loads as a time-effective alternative to hypertrophy-traditional resistance training. However, the oxidative stress biomarker responses to high-load circuit training are unknown. The aim of the present study was to compare oxidative stress biomarker response with an acute session of hypertrophy-resistance circuit training and traditional interval training. A week after the 1 repetition maximum (1RM) test, 11 healthy and well-trained male participants completed hypertrophy-resistance acute sessions of traditional interval training (3 x 10 repetitions at 75% of the 1RM, with 90-second passive rest) and circuit training (3 x 10 repetitions at 75% of the 1RM, in alternating performance of 2 exercises with different muscle groups) in a randomized and cross-over design. Venous blood samples were collected before (pre) and 10 minutes after (post) the resistance training sessions for oxidative stress biomarker assays. As expected, the time used to complete the circuit training (20.2 +/- 1.6) was half of that needed to complete the traditional interval training (40.3 +/- 1.8). Significant increases (p < 0.05) in thiobarbituric acid reactive substances (40%), creatine kinase (CK) (67%), glutathione (14%), and uric acid (25%) were detected posttraditional interval training session in relation to pre. In relation to circuit training, a significant increase in CK (33%) activity postsession in relation to pre was observed. Statistical analysis did not reveal any other change in the oxidative stress biomarker after circuit training. In conclusion, circuit resistance-hypertrophy training scheme proposed in the current study promoted lower oxidative stress biomarkers and antioxidant modulations compared with resistance traditional interval training.
Resumo:
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO(2max) for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-alpha levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-alpha and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), INF-alpha (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect. Published by Elsevier Ltd.
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals
Resumo:
Intense physical training and dietary energy restriction have been associated with consequences such as nutritional amenorrhea. We investigated the effects of intense physical training, food restriction or the combination of both strategies on estrous cyclicity in female rats, and the relationship between leptin ad these effects. Twenty-seven female Wistar rats were distributed into four groups: SF: sedentary, fed ad libitum; SR: sedentary subjected to 50% food restriction (based on the food intake of their fed counterparts); TF: trained (physical training on a motor treadmill with a gradual increase in speed and time), fed ad libitum; TR; trained with 50% food restriction. We analysed estrous cyclicity, plasma leptin and estradiol as well as chemical composition of the carcass, body weight variation. and weight of ovaries and perirenal adipose tissue. Data demonstrate that physical training alone was not responsible for significant modifications in either carcass chemical composition or reproductive function. Food restriction reduced leptin levels in all animals and interrupted the estrous cyclicity in some animals, but only the combination of food restriction and physical training was capable of interrupting the estrous cyclicity in all animals. Leptin was not directly related to estrous cyclicity. From our findings, it may be concluded that there is an additive or synergistic effect of energy intake restriction and energy expenditure by intense physical training on estrous cyclicity. Leptin appears to be one among others factors related to estrous cycle, but it probably acts indirectly.
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals.
Resumo:
Exercise training has been shown to be effective in improving exercise capacity and quality of life in patients with heart failure and left ventricular (LV) systolic dysfunction. Real-time myocardial contrast echocardiography (RTMCE) is a new technique that allows quantitative analysis of myocardial blood flow (MBF). The aim of this study was to determine the effects of exercise training on MBF in patients with LV dysfunction. We studied 23 patients with LV dysfunction who underwent RTMCE and cardiopulmonary exercise testing at baseline and 4 months after medical treatment (control group, n = 10) or medical treatment plus exercise training (trained group, n = 13). Replenishment velocity (0) and MBF reserves were derived from quantitative RTMCE. The 4-month exercise training consisted of 3 60-minute exercise sessions/week at an intensity corresponding to anaerobic threshold, 10% below the respiratory compensation point. Aerobic exercise training did not change LV diameters, volumes, or ejection fraction. At baseline, no difference was observed in MBF reserve between the control and trained groups (1.89, 1.67 to 1.98, vs 1.81, 1.28 to 2.38, p = 0.38). Four-month exercise training resulted in a significant increase in beta reserve from 1.72 (1.45 to 1.48) to 2.20 (1.69 to 2.77, p <0.001) and an MBF reserve from 1.81 (1.28 to 2.38) to 3.05 (2.07 to 3.93, p <0.001). In the control group, 13 reserve decreased from 1.51 (1.10 to 1.85) to 1.46 (1.14 to 2.33, p = 0.03) and MBF reserve from 1.89 (1.67 to 1.98) to 1.55 (1.11 to 2.27, p <0.001). Peak oxygen consumption increased by 13.8% after 4 months of exercise training and decreased by 1.9% in the control group. In conclusion, exercise training resulted in significant improvement of MBF reserve in patients with heart failure and LV dysfunction. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;105:243-248)
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.
Resumo:
The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-alpha gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 +/- 3 minutes) when compared with EX group (425 +/- 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-alpha was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery.
Resumo:
Wild-caught larvae, attributed to the lobster shrimp Arius serratus, consisting of two zoeal stages and a decapodid (megalopa), are described in detail. Parentage of larvae was ascertained based on geographic distribution of axiideans and gebiideans (= former thalassinideans) within the study area and close morphological resemblance to other congeneric larval stages. Larvae of A. serratus represent the first described 'thalassinidean' larvae from Canadian Atlantic waters and the first for Axiidae within the northwest Atlantic. Among axiidean larvae, those of A. serratus most closely resemble larvae of A. stirhynchus from the eastern Atlantic. Distinct features include the spination of the pleon that set A. serratus zoeae apart from those of most other 'thalassinideans' but that, in combination with a telson very similar to Homarus americanus, contributes to the general resemblance of A. serratus larvae to those of the American lobster. The primary distinction between these taxa is the presence of a chela on the third pereiopod in the latter that is not present in the former. In view of these appendages being prone to loss or damage, other characters that separate these taxa are listed and discussed. Given the uncertain status of some taxa within Axiidae and limited detailed information of larvae with certain parentage, difficulties in delineating the family based on larvae persist, as they do for cladistic analyses using adult morphology and molecular approaches.
Resumo:
Aim. The purpose of present study was to compare the acute physiological responses to a circuit weight training with the responses to a combined circuit training (weight training and treadmill run). Methods. The sample consisted of 25 individuals at an average state of training, 10 men and 15 female, between 18 and 35 year old. There were selected 60 second sets of resistance exercises to the circuit weight training (CWT). Whereas in the combined circuit training (CCT), the subjects spent 30 seconds on the same resistance exercises and 30 seconds running on the treadmill. The rest intervals between the sets lasted 15 seconds. The analysis of variance (ANOVA) with 5% significance level was utilized to the statistical analysis of the results. Results. Comparing circuit training protocols, it was noted that CCT elicits a higher relative and absolute <(V)over dot>O(2) and energy expenditure values than CWT for both genders (P<0.05). Regarding inter-gender comparison, males showed higher absolute and relative <(V)over dot>O(2) and absolute energy expenditure values for both CWT and CCT than females (P<0.05). Females showed a significant greater % <(V)over dot>O(2max) value for both CWT and CCT. Due to the experimental conditions used to state both circuit training bouts (CWT and CCT), the <(V)over dot>O(2) rate found was higher than the values reported by previous studies which used heavier weight lift. Conclusion. CCT seems adequate to produce cardiovascular improvements and greater energy expenditure for both men and women, while CWT group classes are sufficient only for unfit women.