3 resultados para the teacher’s identity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generic identity of Odontophrynus moratoi is controversial since the original description due to the presence of intermediate morphological features between the genera Odontophrynus and Proceratophrys. Herein we performed molecular analyses of three genes (16S, cyt b and Rag-1) and recovered O. moratoi deeply imbedded inside a clade containing only Proceratophrys species, appearing as the sister group of Proceratophrys concavitympanum. Therefore, this study formally transfers the species O. moratoi to the genus Proceratophrys [Proceratophrys moratoi (Jim & Caramaschi 1980) comb. nov].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geographic variation and hemipenial morphology of Siagonodon brasiliensis are described based on a comprehensive sample, allowing the reappraisal of its generic identity, and the proposal of a new nomenclatural combination. We suggest that the presence of two supralabials, as mentioned in the original description of S. brasiliensis, is not a common feature for this species, occurring at low frequencies throughout its geographic distribution. Based on a diagnosis presented in a recently published paper, as well as on additional external traits and on hemipenial characters, we recognize Siagonodon brasiliensis as a species of the genus Tricheilostoma. In addition, a new species of worm snake of the genus Siagonodon is described from the savannas of the state of Tocantins, Brazil. The new species differs from other congeners by having a slightly acuminate snout in lateral and ventral views, subcircular rostral in dorsal view, and 12 scale rows around middle of tail. The diagnosis of the genus Siagonodon is revised and expanded based on direct observation of morphological characters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Hsp70 family is one of the most important and conserved molecular chaperone families. It is well documented that Hsp70 family members assist many cellular processes involving protein quality control, as follows: protein folding, transport through membranes, protein degradation, escape from aggregation, intracellular signaling, among several others. The Hsp70 proteins act as a cellular pivot capable of receiving and distributing substrates among the other molecular chaperone families. Despite the high identity of the Hsp70 proteins, there are several homologue Hsp70 members that do not have the same role in the cell, which allow them to develop and participate in such large number of activities. The Hsp70 proteins are composed of two main domains: one that binds ATP and hydrolyses it to ADP and another which directly interacts with substrates. These domains present bidirectional heterotrophic allosteric regulation allowing a fine regulated cycle of substrate binding and release. The general mechanism of the Hsp70s cycle is under the control of ATP hydrolysis that modulates the low (ATP-bound state) and high (ADP-bound state) affinity states of Hsp70 for substrates. An important feature of the Hsp70s cycle is that they have several co-chaperones that modulate their cycle and that can also interact and select substrates. Here, we review some known details of the bidirectional heterotrophic allosteric mechanism and other important features for Hsp70s regulating cycle and function.