2 resultados para tegument

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomiasis is one of the world`s greatly neglected tropical diseases, and its control is largely dependent on a single drug, praziquantel. Here, we report the in vitro effect of piplartine, an amide isolated from Piper tuberculatum (Piperaceae), on Schistosoma mansoni adult worms. A piplartine concentration of 15.8 mu M reduced the motor activity of worms and caused their death within 24 h in a RPMI 1640 medium. Similarly, the highest sub-lethal concentration of piplartine (6.3 mu M) caused a 75% reduction in egg production in spite of coupling. Additionally, piplartine induced morphological changes on the tegument, and a quantitative analysis carried out by confocal microscopy revealed an extensive tegumental destruction and damage in the tubercles. This damage was dose-dependent in the range of 15.8-630.2 mu M. At doses higher than 157.6 mu M, piplartine induced morphological changes in the oral and ventral sucker regions of the worms. It is the first time that the schistosomicidal activity has been reported for piplartine. Published by Elsevier Inc.