11 resultados para support vector machine

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a filter-based algorithm for feature selection. The filter is based on the partitioning of the set of features into clusters. The number of clusters, and consequently the cardinality of the subset of selected features, is automatically estimated from data. The computational complexity of the proposed algorithm is also investigated. A variant of this filter that considers feature-class correlations is also proposed for classification problems. Empirical results involving ten datasets illustrate the performance of the developed algorithm, which in general has obtained competitive results in terms of classification accuracy when compared to state of the art algorithms that find clusters of features. We show that, if computational efficiency is an important issue, then the proposed filter May be preferred over their counterparts, thus becoming eligible to join a pool of feature selection algorithms to be used in practice. As an additional contribution of this work, a theoretical framework is used to formally analyze some properties of feature selection methods that rely on finding clusters of features. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.