17 resultados para supernovae: individual (Supernova 1987A)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The transition redshift (deceleration/acceleration) is discussed by expanding the deceleration parameter to first order around its present value. A detailed study is carried out by considering two different parametrizations, q = q(0) + q(1)z and q = q(0) + q(1)z(1 + z)(-1), and the associated free parameters (q(0), q(1)) are constrained by three different supernovae (SNe) samples. A previous analysis by Riess et al. using the first expansion is slightly improved and confirmed in light of their recent data (Gold07 sample). However, by fitting the model with the Supernova Legacy Survey (SNLS) type Ia sample, we find that the best fit to the redshift transition is z(t) = 0.61, instead of z(t) = 0.46 as derived by the High-z Supernovae Search (HZSNS) team. This result based in the SNLS sample is also in good agreement with the sample of Davis et al., z(t) = 0.60(-0.11)(+0.28) (1 sigma). Such results are in line with some independent analyses and accommodate more easily the concordance flat model (Lambda CDM). For both parametrizations, the three SNe Ia samples considered favour recent acceleration and past deceleration with a high degree of statistical confidence level. All the kinematic results presented here depend neither on the validity of general relativity nor on the matter-energy contents of the Universe.
Resumo:
Some observations of galaxies, and in particular dwarf galaxies, indicate a presence of cored density profiles in apparent contradiction with cusp profiles predicted by dark matter N-body simulations. We constructed an analytical model, using particle distribution functions (DFs), to show how a supernova (SN) explosion can transform a cusp density profile in a small-mass dark matter halo into a cored one. Considering the fact that an SN efficiently removes matter from the centre of the first haloes, we study the effect of mass removal through an SN perturbation in the DFs. We find that the transformation from a cusp into a cored profile occurs even for changes as small as 0.5 per cent of the total energy of the halo, which can be produced by the expulsion of matter caused by a single SN explosion.
Resumo:
Objectives: To assess the role of the individual determinants on the inequalities of dental services utilization among low-income children living in the working area of Brazilian`s federal Primary Health Care program, which is called Family Health Program (FHP), in a big city in Southern Brazil. Methods: A cross-sectional population-based study was performed. The sample included 350 children, ages 0 to 14 years, whose parents answered a questionnaire about their socioeconomic conditions, perceived needs, oral hygiene habits, and access to dental services. The data analysis was performed according to a conceptual framework based on Andersen`s behavioral model of health services use. Multivariate models of logistic regression analysis instructed the hypothesis on covariates for never having had a dental visit. Results: Thirty one percent of the surveyed children had never had a dental visit. In the bivariate analysis, higher proportion of children who had never had a dental visit was found among the very young, those with inadequate oral hygiene habits, those without perceived need of dental care, and those whose family homes were under absent ownership. The mechanisms of social support showed to be important enabling factors: children attending schools/kindergartens and being regularly monitored by the FHP teams had higher odds of having gone to the dentist, even after adjusting for socioeconomic, demographic, and need variables. Conclusions: The conceptual framework has confirmed the presence of social and psychosocial inequalities on the utilization pattern of dental services for low-income children. The individual determinants seem to be important predictors of access.
Resumo:
Influences of inbreeding on daily milk yield (DMY), age at first calving (AFC), and calving intervals (CI) were determined on a highly inbred zebu dairy subpopulation of the Guzerat breed. Variance components were estimated using animal models in single-trait analyses. Two approaches were employed to estimate inbreeding depression: using individual increase in inbreeding coefficients or using inbreeding coefficients as possible covariates included in the statistical models. The pedigree file included 9,915 animals, of which 9,055 were inbred, with an average inbreeding coefficient of 15.2%. The maximum inbreeding coefficient observed was 49.45%, and the average inbreeding for the females still in the herd during the analysis was 26.42%. Heritability estimates were 0.27 for DMY and 0.38 for AFC. The genetic variance ratio estimated with the random regression model for CI ranged around 0.10. Increased inbreeding caused poorer performance in DMY, AFC, and CI. However, some of the cows with the highest milk yield were among the highly inbred animals in this subpopulation. Individual increase in inbreeding used as a covariate in the statistical models accounted for inbreeding depression while avoiding overestimation that may result when fitting inbreeding coefficients.
Resumo:
The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.
Resumo:
A possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminosity distance to fourth order and fitting the SN Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distributions for the deceleration parameter today suggest a recent reduction of the cosmic acceleration and indicate that there is a considerable probability for q(0) > 0. Also in contrast to the prediction of the Lambda CDM model, the cosmographic q(z) reconstruction permits a cosmic expansion history where the cosmic acceleration could already have peaked and be presently slowing down, which would imply that the recent accelerated expansion of the universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminosity distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the universe.
Resumo:
We discuss the association between the candidate magnetar CXOU J171405.7-381031 and the supernova remnant CTB 37B. The recent detection of the period derivative of the object allowed an estimation of a young characteristic age of only similar to 1000 yr. This value is too small to be compatible even with the minimum radius of the remnant being >= 10 pc, the value corresponding to the lower limit of the estimated distance of 10.2 +/- 3.5 kpc, unless the true distance happens to be even smaller than the lower limit. We argue that a consistent scenario for the remnant`s origin, in which the latter is powered by the energy injected by a young magnetar, is indeed more accurate to explain the young age, and demonstrates its non-standard (i.e. magnetar-driven) nature.
Resumo:
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The exact physical conditions generating the abundances of r-elements in environments such as supernovae explosions are still under debate. We evaluated the characteristics expected for the neutrino wind in the proposed model of type-II supernova driven by conversion of nuclear matter to strange matter. Neutrinos will change the final abundance of elements after freeze out of r-process nucleosynthesis, specially those close to mass peaks.
Resumo:
Recently, it has been proposed that there are two type Ia supernova progenitors: short-lived and long-lived. On the basis of this idea, we develop a theory of a unified mechanism for the formation of the bimodal radial distribution of iron and oxygen in the Galactic disc. The underlying cause for the formation of the fine structure of the radial abundance pattern is the influence of the spiral arms, specifically the combined effect of the corotation resonance and turbulent diffusion. From our modelling, we conclude that in order to explain the bimodal radial distributions simultaneously for oxygen and iron and to obtain approximately equal total iron output from different types of supernovae, the mean ejected iron mass per supernova event should be the same as quoted in the literature if the maximum mass of stars, which eject heavy elements, is 50 M(circle dot). For the upper mass limit of 70 M(circle dot), the production of iron by a type II supernova explosion should increase by about 1.5 times.
Resumo:
In this work, considering the impact of a supernova remnant (SNR) with a neutral magnetized cloud we derived analytically a set of conditions that are favourable for driving gravitational instability in the cloud and thus star formation. Using these conditions, we have built diagrams of the SNR radius, R(SNR), versus the initial cloud density, n(c), that constrain a domain in the parameter space where star formation is allowed. This work is an extension to previous study performed without considering magnetic fields (Melioli et al. 2006, hereafter Paper I). The diagrams are also tested with fully three-dimensional MHD radiative cooling simulations involving a SNR and a self-gravitating cloud and we find that the numerical analysis is consistent with the results predicted by the diagrams. While the inclusion of a homogeneous magnetic field approximately perpendicular to the impact velocity of the SNR with an intensity similar to 1 mu G within the cloud results only a small shrinking of the star formation zone in the diagram relative to that without magnetic field, a larger magnetic field (similar to 10 mu G) causes a significant shrinking, as expected. Though derived from simple analytical considerations these diagrams provide a useful tool for identifying sites where star formation could be triggered by the impact of a supernova blast wave. Applications of them to a few regions of our own Galaxy (e.g. the large CO shell in the direction of Cassiopeia, and the Edge Cloud 2 in the direction of the Scorpious constellation) have revealed that star formation in those sites could have been triggered by shock waves from SNRs for specific values of the initial neutral cloud density and the SNR radius. Finally, we have evaluated the effective star formation efficiency for this sort of interaction and found that it is generally smaller than the observed values in our own Galaxy (SFE similar to 0.01-0.3). This result is consistent with previous work in the literature and also suggests that the mechanism presently investigated, though very powerful to drive structure formation, supersonic turbulence and eventually, local star formation, does not seem to be sufficient to drive global star formation in normal star-forming galaxies, not even when the magnetic field in the neutral clouds is neglected.
Resumo:
The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter ( constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter ( constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Lambda CDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q(0) and j(0)) and for the transition redshift (z(t)) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1 sigma confidence limits imply the following ranges of values: q(0) is an element of [-0.96, -0.46], j(0) is an element of [-3.2,-0.3] and z(t) is an element of [0.36, 0.84], which are compatible with the Lambda CDM predictions, q(0) = -0.57 +/- 0.04, j(0) = -1 and z(t) = 0.71 +/- 0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Lambda CDM model, and that the current observations are not powerful enough to discriminate among all of them.
Resumo:
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Lambda CDM model. For a spatially flat Universe, as predicted by inflation (Omega(dm) + Omega(baryon) = 1), it is found that the effectively observed matter density parameter is Omega(meff) = 1 - alpha, where alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires alpha similar to 0.71 so that Omega(meff) similar to 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.
Resumo:
Many generalist populations may actually be composed of relatively specialist individuals. This `individual specialization` may have important ecological and evolutionary implications. Although this phenomenon has been documented in more than one hundred taxa, it is still unclear how individuals within a population actually partition resources. Here we applied several methods based on network theory to investigate the intrapopulation patterns of resource use in the gracile mouse opossum Gracilinanus microtarsus. We found evidence of significant individual specialization in this species and that the diets of specialists are nested within the diets of generalists. This novel pattern is consistent with a recently proposed model of optimal foraging and implies strong asymmetry in the interactions among individuals of a population.
Resumo:
P>1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.