2 resultados para sulfate reducing bacteria

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. To investigate the root canal microbiota of primary teeth with apical periodontitis and the in vivo antimicrobial effects of a calcium hydroxide/chlorhexidine paste used as root canal dressing. Design. Baseline samples were collected from 30 root canals of primary teeth with apical periodontitis. Then, the root canals were filled with a calcium hydroxide paste containing 1% chlorhexidine for 14 days and the second bacteriologic samples were taken prior to root canal filling. Samples were submitted to microbiologic culture procedure to detect root canal bacteria and processed for checkerboard DNA-DNA hybridization. Results. Baseline microbial culture revealed high prevalence and cfu number of anaerobic, black-pigmented bacteroides, Streptococcus, and aerobic microorganisms. Following root canal dressing, the overall number of cfu was dramatically diminished compared to initial contamination (P < 0.05), although prevalence did not change (P > 0.05). Of 35 probes used for checkerboard DNA-DNA hybridization, 31 (88.57%) were present at baseline, and following root canal dressing, the number of positive probes reduced to 13 (37.14%). Similarly, the number of bacterial cells diminished folowing application of calcium hydroxide/chlorhexidine root canal dressing (P = 0.006). Conclusion. Apical periodontitis is caused by a polymicrobial infection, and a calcium hydroxide/chlorhexidine paste is effective in reducing the number of bacteria inside root canals when applied as a root canal dressing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes, Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces. Methods and Results: Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 10(2) CFU cm(-2). On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion. Conclusions: The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria. Significance and Impact of the Study: This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes, Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.