3 resultados para substrate temperature
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Habitat use affects food intake, reproductive fitness and body temperature control in reptiles. Habitat use depends on both the characteristics of the animal and the environmental heterogeneity. In this study we investigated habitat use in a population of the South-American rattlesnake, Crotalus durissus, in a cerrado (the Brazilian savanna) remnant, in south-eastern Brazil. In general, snakes appeared to be thermal generalists. However, they showed substrate temperature preferences in the rainy season, when they selected colder substrates during the day and warmer substrates at night. Individuals were predominantly active on the surface and more frequently found under bushes. Furthermore, in general, the principal component analysis results indicate that rattlesnakes are generalists regarding the microhabitat variables examined in this study. These habitat characteristics, associated with a low thermal selectivity, indicate that rattlesnakes are able to colonize deforested areas where shade occurrence and vegetation cover are similar to those in the cerrado.
Resumo:
Phthalocyanine compounds have been widely investigated as candidate materials for technological applications, which is mainly due to their thermal stability and possibility of processing in the form of thin films. In most applications, the controlled growth of thin films with high crystalline quality is essential. In this study, zinc phthalocyanine (ZnPc) thin films were prepared by evaporation on glass and Au-coated glass substrates with subsequent annealing at different temperatures in ambient atmosphere. The morphological and structural features of 80 nm thick zinc phthalocyanine films were investigated, evidencing an alpha -> beta phase transformation after annealing the films at 200 A degrees C, as indicated by UV-Vis spectroscopy and FTIR analyses. A better uniformity of the annealed films was also evidenced via AFM analysis, which may be of importance for applications where film homogeneity and excellent optical quality are required.
Resumo:
The synthesis and self-assembly of tetragonal phase-containing L1(0)-Fe(55)Pt(45) nanorods with high coercive field is described. The experimental procedure resulted in a tetragonal/cubic phase ratio close to 1:1 for the as-synthesized nanoparticles. Using different surfactant/solvent proportions in the process allowed control of particle morphology from nanospheres to nanowires. Monodisperse nanorods with lengths of 60 +/- 5 nm and diameters of 2-3 nm were self-assembled in a perpendicular oriented array onto a substrate surface using hexadecylamine as organic spacer. Magnetic alignment and properties assigned, respectively, to the shape anisotropy and the tetragonal phase suggest that the self-assembled materials are a strong candidate to solve the problem of random magnetic alignment observed in FePt nanospheres leading to applications in ultrahigh magnetic recording (UHMR) systems capable of achieving a performance of the order of terabits/in(2).