3 resultados para streets

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud streets are common feature in the Amazon Basin. They form from the combination of the vertical trade wind stress and moist convection. Here, satellite imagery, data collected during the COBRA-PARA (Caxiuan Observations in the Biosphere, River and Atmosphere of Para) field campaign, and high resolution modeling are used to understand the streets` formation and behavior. The observations show that the streets have an aspect ratio of about 3.5 and they reach their maximum activity around 15:00 UTC when the wind shear is weaker, and the convective boundary layer reaches its maximum height. The simulations reveal that the cloud streets onset is caused by the local circulations and convection produced at the interfaces between forest and rivers of the Amazon. The satellite data and modeling show that the large rivers anchor the cloud streets producing a quasi-stationary horizontal pattern. The streets are associated with horizontal roll vortices parallel to the mean flow that organizes the turbulence causing advection of latent heat flux towards the upward branches. The streets have multiple warm plumes that promote a connection between the rolls. These spatial patterns allow fundamental insights on the interpretation of the Amazon exchanges between surface and atmosphere with important consequences for the climate change understanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Letter describes a method for the quantification of the diversity of non-linear dynamics in complex networks as a consequence of self-avoiding random walks. The methodology is analyzed in the context of theoretical models and illustrated with respect to the characterization of the accessibility in urban streets. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidimensional scaling is applied in order to visualize an analogue of the small-world effect implied by edges having different displacement velocities in transportation networks. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highway network enhanced by some of the main US airlines routes. We also show that the travel time in these two networks is drastically changed by attacks targeting the edges with large displacement velocities. (C) 2011 Elsevier By. All rights reserved.