68 resultados para stochastic simulations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Madden-Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability. This study investigated the following questions. Do inter-annual-to-decadal variations in tropical sea surface temperature (SST) lead to substantial changes in MJO activity? Was there a change in the MJO in the 1970s? Can this change be associated to SST anomalies? What was the level of MJO activity in the pre-reanalysis era? These questions were investigated with a stochastic model of the MJO. Reanalysis data (1948-2008) were used to develop a nine-state first order Markov model capable to simulate the non-stationarity of the MJO. The model is driven by observed SST anomalies and a large ensemble of simulations was performed to infer the activity of the MJO in the instrumental period (1880-2008). The model is capable to reproduce the activity of the MJO during the reanalysis period. The simulations indicate that the MJO exhibited a regime of near normal activity in 1948-1972 (3.4 events year(-1)) and two regimes of high activity in 1973-1989 (3.9 events) and 1990-2008 (4.6 events). Stochastic simulations indicate decadal shifts with near normal levels in 1880-1895 (3.4 events), low activity in 1896 1917 (2.6 events) and a return to near normal levels during 1918-1947 (3.3 events). The results also point out to significant decadal changes in probabilities of very active years (5 or more MJO events): 0.214 (1880-1895), 0.076 (1896-1917), 0.197 (1918-1947) and 0.193 (1948-1972). After a change in behavior in the 1970s, this probability has increased to 0.329 (1973-1989) and 0.510 (1990-2008). The observational and stochastic simulations presented here call attention to the need to further understand the variability of the MJO on a wide range of time scales.
Resumo:
We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have studied by numerical simulations the relaxation of the stochastic seven-state Potts model after a quench from a high temperature down to a temperature below the first-order transition. For quench temperatures just below the transition temperature the phase ordering occurs by simple coarsening under the action of surface tension. For sufficient low temperatures however the straightening of the interface between domains drives the system toward a metastable disordered state, identified as a glassy state. Escaping from this state occurs, if the quench temperature is nonzero, by a thermal activated dynamics that eventually drives the system toward the equilibrium state. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study by numerical simulations the time correlation function of a stochastic lattice model describing the dynamics of coexistence of two interacting biological species that present time cycles in the number of species individuals. Its asymptotic behavior is shown to decrease in time as a sinusoidal exponential function from which we extract the dominant eigenvalue of the evolution operator related to the stochastic dynamics showing that it is complex with the imaginary part being the frequency of the population cycles. The transition from the oscillatory to the nonoscillatory behavior occurs when the asymptotic behavior of the time correlation function becomes a pure exponential, that is, when the real part of the complex eigenvalue equals a real eigenvalue. We also show that the amplitude of the undamped oscillations increases with the square root of the area of the habitat as ordinary random fluctuations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The fluid flow over bodies with complex geometry has been the subject of research of many scientists and widely explored experimentally and numerically. The present study proposes an Eulerian Immersed Boundary Method for flows simulations over stationary or moving rigid bodies. The proposed method allows the use of Cartesians Meshes. Here, two-dimensional simulations of fluid flow over stationary and oscillating circular cylinders were used for verification and validation. Four different cases were explored: the flow over a stationary cylinder, the flow over a cylinder oscillating in the flow direction, the flow over a cylinder oscillating in the normal flow direction, and a cylinder with angular oscillation. The time integration was carried out by a classical 4th order Runge-Kutta scheme, with a time step of the same order of distance between two consecutive points in x direction. High-order compact finite difference schemes were used to calculate spatial derivatives. The drag and lift coefficients, the lock-in phenomenon and vorticity contour plots were used for the verification and validation of the proposed method. The extension of the current method allowing the study of a body with different geometry and three-dimensional simulations is straightforward. The results obtained show a good agreement with both numerical and experimental results, encouraging the use of the proposed method.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization
Resumo:
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed.
Resumo:
Consider N sites randomly and uniformly distributed in a d-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last mu (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycle). For one-dimensional systems, travelers can or cannot explore all available space, giving rise to a crossover between localized and extended regimes at the critical memory mu(1) = log(2) N. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter T (temperature). In this case, the walker movement is driven by a probability density function parameterized by T and a cost function. The cost function increases as the distance between two sites and favors hops to closer sites. As the temperature increases, the walker can escape from cycles that are reminiscent of the deterministic nature and extend the exploration. Here, we report an analytical model and numerical studies of the influence of the temperature and the critical memory in the exploration of one-dimensional disordered systems.
Resumo:
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.
Resumo:
Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims. We here discuss the properties of the double cluster Abell 1758 at a redshift z similar to 0.279. These clusters show strong evidence for merging. Methods. We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 x 1.16 deg(2), or 16.1 x 17.6 Mpc(2). Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results. The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical simulations, we could mimic the most prominent features present in the metallicity map and propose an explanation for the dynamical history of the cluster. We found in particular that in the metal-rich elongated regions of the North cluster, winds had been more efficient than ram-pressure stripping in transporting metal-enriched gas to the outskirts. Conclusions. We confirm the merging structure of the North and South clusters, both at optical and X-ray wavelengths.
Resumo:
In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.