27 resultados para starch hydrolysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C(PVA)) Of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (C(P)) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA Using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture Content. the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation. elongation at break, solubility in water, Moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the C(P) affected this property. Moreover. the puncture force was affected slightly by the C(PVA). Concerning the Solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA Values. In general. the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to study the color, opacity, crystallinity, and the thermal and mechanical properties of films based on blends of gelatin and five different types of PVA [poly(vinyl alcohol)], with and without a plasticizer. The effect of the degree of hydrolysis of the PVA and the glycerol concentration on these properties was studied using colorimetry, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile mechanical tests. All films were essentially colorless (Delta E* < 5) and with low opacity ( Y <= 2.1). The DSC results were typical of partially crystalline materials, showing some phase separation characterized by a glass transition (T(g) = 40-55 degrees C), related to the amorphous part of the material, followed by two endothermic peaks related to the melting (T(m) = 100-160 and 170-210 degrees C) of the crystallites. The XRD results confirmed the crystallinity of the films. The film produced with PVA Celvol((R)) 418 (DH = 91.8%) showed the highest tensile resistance (tensile strength = 38 MPa), for films without plasticizer. However, with glycerol, the above-mentioned PVA and the PVA Celvol((R)) 504 produced the least resistant films of all the PVA types. But, although the mechanical properties of the blended films depended on the type of PVA used, there was no direct relationship between these properties and the degree of hydrolysis of the PVA. The properties studied were more closely dependent on the glycerol concentration. Finally, the mechanical resistance of the films presented a linear relationship with the glass transition temperature of the films. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pH indicator film based on cassava starch plasticized with sucrose and inverted sugar and incorporated with grape and spinach extracts as pH indicator sources (anthocyanin and chlorophyll) has been developed, and its packaging properties have been assessed. A second-order central composite design (2(2)) with three central points and four star points was used to evaluate the mechanical properties (tensile strength, tensile strength at break, and elongation at break percentage), moisture barrier, and microstructure of the films, and its potential as a pH indicator packaging. The films were prepared by the casting technique and conditioned under controlled conditions (75% relative humidity and 23 degrees C), at least 4 days before the analyses. The materials were exposed to different pH solutions (0, 2, 7, 10, and 14) and their color parameters (L*, a*, b*, and haze) were measured by transmittance. Grape and spinach extracts have affected the material characterization. Film properties (mechanical properties and moisture barrier) were strongly influenced by extract concentration presenting lower results than for the control. Films containing a higher concentration of grape extract presented a greater color change at different pH`s suggesting that anthocyanins are more effective as pH indicators than chlorophyll or the mixture of both extracts. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1069-1079,2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable films based on cassava starch and with addition of natural antimicrobial ingredients were prepared using the casting technique. The tensile properties tensile strength (TS) [MPa] and percent elongation (E) at break [%] and the water vapor transmission (WVT) of the biodegradable films were evaluated and compared with the control (without antimicrobial ingredients). The evaluation of the Colony Forming Units per gram [CFU/g] of pan bread slices packed with the best biodegradable films, in terms of packaging performance, was also determined. The addition onto the matrix of only clove and cinnamon powders could reduce the films WVT when compared to the control, however TS and E were lower than the control and the effect of cinnamon was milder regarding this property. Since water activity of the pan bread slices packed with the biodegradable films increased considerably during the storage period, the antimicrobial effect could not be clearly determined. (C) 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of glycerol on the physical properties of edible films were identified by X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared (FTIR) and microwave spectroscopy. According to XRD diffractograms, films with 0 and 15% glycerol displayed an amorphous character, and a tendency to semicrystallization, for films with 30% and 45% glycerol. From DSC thermograms, the glass transition (Tg) of the films decreased with glycerol content. However, two Tgs were observed for samples with 30% and 45% glycerol, due to a phase separation. The intensity and positions of the peaks in FTIR fingerprint region presented slight variations due to new interactions arising between glycerol and biopolymer. Microwave measurements were sensitive to moisture content in the films, due to hydrophilic nature of the glycerol. The effect of plasticizer plays, then, an important rule on the physical and functional properties of these films, for applications in food technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol (R) 418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the glass transition, the glass transition of the maximally freeze-concentrated fractions, the ice melting and the gelatinization phenomenon in dispersions of starch prepared using glycerol- water solutions. The starch concentration was maintained constant at 50 g cassava starch/100 g starch dispersions, but the concentration of the glycerol solutions was variable (C-g= 20, 40, 60, 80 and 100 mass/mass%). The phase transitions of these dispersions were studied by calorimetric methods, using a conventional differential scanning calorimeter (DSC) and a more sensitive equipment (micro-DSC). Apparently, in the glycerol diluted solutions (20 and 40%), the glycerol molecules interacted strongly with the glucose molecules of starch. While in the more concentrated glycerol domains (C-g> 40%), the behaviour was controlled by migration of water molecules from the starch granules, due to a hypertonic character of glycerol, which affected all phase transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of glycerol contents on physical properties of cassava starch films. The films were prepared from film-forming solutions (FFS) with 2g cassava starch/100g water and 0, 15, 30 and 45g glycerol/100g starch, and were analysed to determine its mechanical properties by tensile tests, the glass-transition temperature (T-g) by differential scanning calorimetry (DSC) and the crystallinity by X-ray diffraction (XRD). The infrared spectra of the films were also recorded. The resistance values of the films decreased, while those of the elasticity increased with an increase in glycerol concentration due to the plasticizer effect of glycerol, which was also observed in DSC curves. The T-g of the films prepared decreased with the glycerol content. However, for samples with 30 and 45g glycerol/100g starch, two T-g curves were observed, probably due to a phase separation phenomenon. According to the XRD diffractograms, the films with 0 and 15gglycerol/100g starch presented an amorphous character, but some tendency to show crystalline peaks were observed for films with 30 and 45g glycerol/100g starch. The results obtained with Fourier transform infrared (FTIR) corroborated these observations. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of edible coatings based on methylcellulose (MC) and cassava starch (CS) to reduce oil uptake and improve water retention of chicken nuggets during deep fat frying. Edible coatings were prepared with I g of MC/100 g solution and 4 g of CS/100 g solution, with 25 or 55 g glycerol/100 g biopolymer. These solutions were applied to nugget samples before battering. Pre-fried and fried nuggets were analyzed to determine lipid and water contents. Color and texture were also measured in the fried nuggets. In general, there was no effect of the two concentrations of plasticizer of either of the biopolymers on the water retention of whole nuggets. But, higher oil uptake reduction, and consequently, lower lipid content was observed on nuggets coated with CS and 25% plasticizer. The coated samples were darker and had a brighter yellow color when compared with the control. There was also a significant decrease in the shearing force of the fried coated samples, indicating reduced hardness of these samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ATP, ADP, and adenosine in the processes of platelet aggregation, vasodilatation, and coronary flow have been known for many years. The sequential hydrolysis of ATP to adenosine by soluble nucleotidases constitutes the main system for rapid inactivation of circulating adenine nucleotides. Thyroid disorders affect a number of biological factors including adenosine levels in different fractions. Then, we intend to investigate if the soluble nucleotidases responsible for the ATP, ADP, and AMP hydrolysis are affected by variations in the thyroid hormone levels in blood serum from adult rats. Hyperthyroidism was induced by daily intraperitoneal injections of L-thyroxine (T4) (2.5 and 10.0 mu g/100 g body weight, respectively) for 7 or 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water during 7 or 14 days. The treatments efficacy was confirmed by determination of hemodynamic parameters and cardiac hypertrophy evaluation. T4 treatment predominantly inhibited, and hypothyroidism (14 days after thyroidectomy) predominantly increased the ATP, ADP, and AMP hydrolysis in rat blood serum. These results suggest that both excess and deficiency of thyroid hormones can modulate the ATP diphosphohydrolase and 5`-nucleotidase activities in rat blood serum and consequently modulate the effects mediated by these enzymes and their products in vascular system. (C) 2010 International Union of Biochemistry and Molecular Biology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the formation of ferrihydrite nanoparticles (NPs) by hydrolysis of the Fe(III) alkoxide Fe(O(t)Bu)(3). Controlled amounts of water, up to 3.0 vol%, were added to the precursor solution yielding a series of hydrolyzed samples ranging from P0.0 (the unreacted precursor) to P3.0. X-ray diffraction (XRD) analysis evidenced the formation of high-crystalline ferrihydrite NP in sample P3.0, with grain size estimate of about 3.2 nm. The transition from the molecular precursor to the formation of crystalline magnetic NPs was followed through magnetization measurements M(T) and M(H), as well as Mossbauer spectroscopy (MS). M(T) measurements indicate a paramagnetic (PM) behavior for sample P0.0, characteristic of binuclear Fe-O-Fe units, which evolves to a superparamagnetic (SPM) behavior, with an energy barrier for the blocking process estimated for sample P3.0 as E(a) = 4.9 x 10(-21) J (E(a)/k(B) = 355 K), resulting in a high effective anisotropy constant K(eff) = 290 kJ/m(3). Magnetization loops at 5 K progressively change from PM-like to ferromagnetic-like shape upon increasing the hydrolysis process, although hysteresis (H(c) approximate to 500 Oe) only is apparent for P2.0 and higher. MS spectra at room temperature are PM/SPM doublets for all samples, while the MS spectra at T = 4.2 K reveal increasingly well-defined magnetic ordering as hydrolysis of the precursor stepwise progresses until well-crystallized ferrihydrite particles are formed. (C) 2008 Elsevier B.V. All rights reserved.