11 resultados para southern hemisphere
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cutoff lows (COLs) pressure systems climatology for the Southern Hemisphere (SH), between 10 degrees S and 50 degrees S, using the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) and the ERA-40 European Centre for Medium Range Weather Forecast (ECMWF) reanalyses are analyzed for the period 1979-1999. COLs were identified at three pressure levels (200, 300, and 500 hPa) using an objective method that considers the main physical characteristics of the conceptual model of COLs. Independently of the pressure level analyzed, the climatology from the ERA-40 reanalysis has more COLs systems than the NCEP-NCAR. However, both reanalyses present a large frequency of COLs at 300 hPa, followed by 500 and 200 hPa. The seasonality of COLs differs at each pressure level, but it is similar between the reanalyses. COLs are more frequent during summer, autumn, and winter at 200, 300, and 500 hPa, respectively. At these levels, they tend to occur around the continents, preferentially from southeastern Australia to New Zealand, the south of South America, and the south of Africa. To study the COLs at 200 and 300 hPa from a regional perspective, the SH was divided in three regions: Australia-New Zealand (60 E-130 W), South America (130 degrees W-20 degrees W), and southern Africa (20 degrees W-60 degrees E). The common COLs features in these sectors for both reanalyses are a short lifetime (similar to 80.0% and similar to 70.0% of COLs at 200 and 300 hPa, respectively, persisting for up to 3 days), mobility (similar to 70.0% and similar to 50% of COLs at 200 and 300 hPa, respectively, traveling distances of up to 1200 km), and an eastward propagation.
Resumo:
Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.
Resumo:
The moss Tayloria dubyi (Splachnaceae) is endemic to the subantarctic Magallanes ecoregion where it grows exclusively on bird dung and perhaps only on feces of the goose Chloephaga picta, a unique habitat among Splachnaceae. Some species of Splachnaceae from the Northern Hemisphere are known to recruit coprophilous flies as a vector to disperse their spores by releasing intense odors mimicking fresh clung or decaying corpses. The flies land on the capsule, and may get in contact with the protruding mass of spores that stick to the insect body. The dispersal strategy relies on the spores falling off when the insect reaches fresh droppings or carrion. Germination is thought to be rapid and a new population is quickly established over the entire substrate. The objectives of this investigation were to determine whether the coprophilous T. dubyi attracts flies and to assess the taxonomic diversity of the flies visiting this moss. For this, fly traps were set up above mature sporophyte bearing populations in two peatlands on Navarino Island. We captured 64 flies belonging to the Muscidae (Palpibracus chilensis), Tachinidae (Dasyuromyia sp) and Sarcophagidae (not identified to species) above sporophytes of T. dubyi, whereas no flies were captured in control traps set up above Sphagnum mats nearby.
Resumo:
The southern right whale (Eubalaena australis) was one of the most intensively hunted whales between the 17th and 20th centuries in the southern hemisphere. Recent estimates indicate that today there are around 7000 whales, representing 5 to 10% Of its original population. On the other hand, recent studies estimated that the population that migrates to the Brazilian coast grew by 14% from 1987 to 2003. However, there is no information about sex-ratio for adults or for calves in this region, which is an important parameter for understanding the biology of the species. We present here the first estimate Of calves` sex-ratio of southern right whales found along the southern Brazilian coast, one of the most important wintering grounds for the species. Sex was molecularly indentified for 21 biopsies collected from calves between 1998 and 2002, along the coast of Rio Grande do Sul and Santa Catarina States, in southern Brazil. The sex-ratio was two females for one male, however, it was not statistically different (chi(2) test, alpha = 0.05; df = 1) from the expected ratio of 1:1. This result is in accordance with the sex-ratio estimated for the species of all ages using external morphology (and behaviour in formation), (is well as for most species of baleen whales.
Resumo:
Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.
Resumo:
This work has investigated the impact of three different low-frequency sea surface temperature (SST) variability modes located in the Indian and the Pacific Oceans on the interannual variability of the South American Monsoon System (SAMS) using observed and numerical data. Rotated Empirical Orthogonal Function (REOF) analysis and numerical simulations with a General Circulation Model (GCM) were used. One of the three SST variability modes is located close to southeastern Africa. According to the composites, warmer waters over this region are associated with enhanced austral summer precipitation over the sub-tropics. The GCM is able to reproduce this anomalous precipitation pattern, simulating a wave train emanating from the Indian Ocean towards South America (SA). A second SST variability mode was located in the western Pacific Ocean. REOF analysis indicates that warmer waters are associated with drought conditions over the South Atlantic Convergence Zone (SACZ) and enhanced precipitation over the sub-tropics. The GCM indicates that the warmer waters over Indonesia generate drought conditions over tropical SA through a Pacific South America-like (PSA) wave pattern emanating from the western Pacific. Finally, the third SST variability mode is located over the southwestern South Pacific. The composites indicate that warmer waters are associated with enhanced precipitation over the SACZ and drought conditions over the sub-tropics. There is a PSA-like wave train emanating from Indonesia towards SA, and another crossing the Southern Hemisphere in the extra-tropics, probably associated with transient activity. The GCM is able to reproduce the anomalous precipitation pattern, although it is weaker than observed. The PSA-like pattern is simulated, but the model fails in reproducing the extra-tropical wave activity.
Resumo:
This study presents the first analysis of the energetics associated with a hybrid cyclone`s transition in the Southern Hemisphere, Hurricane Catarina ( March 2004). Catarina has earned a place in history as the first documented South Atlantic hurricane, but its unusual tropical transition is still poorly understood. Here we show that Catarina`s transition was preceded by marked environmental changes in the Lorenz energy cycle, with an abrupt shift from a baroclinic to a predominantly barotropic state. Such changes help to explain the unusual vortex`s growth until its transition was completed. Although the vortex`s energy flux is not explicitly calculated, a likely mechanism linking the environmental energetics with Catarina is the extraction of eddy kinetic energy from horizontal momentum and heat transfers within the through component of the blocking. The results advance the understanding of this rare event and suggest that the technique has a great potential to study transitioning systems in general.
Resumo:
This paper examines moisture transport on intraseasonal timescales over the continent and over the South Atlantic convergence zone (SACZ) during the South America (SA) summer monsoon. Combined Empirical Orthogonal Function analysis (EOFc) of Global Precipitation Climatology Project pentad precipitation, specific humidity, air temperature, zonal and meridional winds at 850 hPa (NCEP/NCAR reanalysis) are performed to identify the large-scale variability of the South America monsoon system and the SACZ. The first EOFc was used as a large-scale index for the South American monsoon (LISAM), whereas the second EOFc characterized the SACZ. LISAM (SACZ) index showed spectral variance on 30-90 (15-20) days and were both band filtered (10-100 days). Intraseasonal wet anomalies were defined when LISAM and SACZ anomalies were above the 75th percentile of their respective distribution. LISAM and SACZ wet events were examined independently of each other and when they occur simultaneously. LISAM wet events were observed with the amplification of wave activity in the Northern Hemisphere and the enhancement of northwesterly cross-equatorial moisture transport over tropical continental SA. Enhanced SACZ was observed with moisture transport from the extratropics of the Southern Hemisphere. Simultaneous LISAM and SACZ wet events are associated with cross-equatorial moisture transport along with moisture transport from Subtropical Southwestern Atlantic.
Resumo:
K-band spectra of young stellar candidates in four Southern hemisphere clusters have been obtained with the Gemini Near-Infrared Spectrograph in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact H II regions. Spectral types were obtained by comparison of the observed spectra with those of a near-infrared (NIR) library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of C IV, N III and N V emission lines at 2.078, 2.116 and 2.100 mu m, respectively. One of them, I16177_IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated Ultra-Compact (UC) H II region shows the s-process [Kr III] and [Se IV] high excitation emission lines, previously identified only in planetary nebula. One young stellar object was found in each cluster, associated with either the main IRAS source or a nearby resolved Midecourse Space eXperiment (MSX) component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS 15408-5356, for which the spectroscopic distance is about a factor of 2 smaller than the kinematic value.
Resumo:
The sub-Antarctic Magellanic ecoregion harbors a high diversity of bryophytes, greater than the species richness of vascular plants. Despite this fact, phenological studies on bryophytes are lacking for this ecoregion and Chile. Based on the study of the sporophytic phase of Tayloria dubyi, an endemic moss from the sub-Antarctic Magellanic ecoregion, we propose a methodology for phonological studies on austral bryophytes. We defined five phenophases, easily distinguishable with a hand-lens, which were monthly recorded during 2007 and 2008 in populations of T dubyi at the Omora Ethnobotanical Park and Mejillones Bay on Navarino Island (55 degrees S) in the Cape Horn Biosphere Reserve. The sporophytic (or reproductive) phase of T. dubyi presented a clear seasonality. After growing in November, in three months (December-February) of the austral reproductive season the sporophytes mature and release their spores; by March they are already senescent. T. dubyi belongs to the Splachnaceae family for which entomochory (dispersal of spores by insects, specifically Diptera) has been detected in the Northern Hemisphere. The period of spores release in T. dubyi coincides with the months of highest activity of Diptera which are potential dispersers of spores; hence, entomochory could also take place in sub-Antarctic Magellanic ecoregion. In sum, our work: (i) defines a methodology for phenological studies in austral bryophytes, (ii) it records a marked seasonality ion the sporophyte phase of T dubyi, and (iii) it proposes to evaluate in future research the occurrence of entomochory in Splachnaceae species growing in the sub-Antarctic peatlands and forest ecosystems in the Southern Hemisphere.
Resumo:
A 72 cm long core was collected from Lagoa da Viracao (LV), a small poind in the Fernando de Noronha island, northern Brazil. Sediments from the lower section of the core (20-72 cm depth) contain essentially mineral matter, while in the upper section (0-20 cm depth) mineral matter is mixed with organic matter. Lithogenic conservative elements - Si, Al, Fe, Ti, Co, Cr, Cu, Ba, Ga, Hf, Nb, Ni, Y, V, Zn, Zr and REE - exhibit remarkably constant values throughout the core, with concentrations similar to those of the bedrock. The vertical distribution of soluble elements - Ca, Mg, Na, K, P, Mn and Sr - is also homogeneous, but these elements are systematically depleted in relation to the bedrock. LOI, TOC, Br, Se, Hg and Pb, although showing nearly constant values in the lower section of the core, are significantly enriched in the upper section. The concentration profiles of Br and Se suggest that they may be accounted for by natural processes, related to the slight affinity of these elements for organic matter. On the other hand, the elevated levels of Hg and Pb in recent sediments may be explained by their long-range atmospheric transport and deposition. Furthermore, the isotopic composition of Pb clearly indicates that anthropogenic sources contributed to the Pb burden in the uppermost pond sediments.