141 resultados para soluble cellulose

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echinolaena inflexa (Poir.) Chase is an abundant C3 grass species with high biomass production in the Brazilian savanna (cerrado); Melinis minutiflora Beauv. is an African C4 forage grass widespread in cerrado and probably displacing some native herbaceous species. In the present work, we analysed seasonally the content and composition of soluble carbohydrates, the starch amounts and the above-ground biomass (phytomass) of E. inflexa and M. minutiflora plants harvested in two transects at 5 and 130 m from the border in a restrict area of cerrado at the Biological Reserve and Experimental Station of Mogi-Guaçu (SP, Brazil). Results showed that water soluble carbohydrates and starch amounts from the shoots of both species varied according to the time of the year, whilst in the underground organs, variations were observed mainly in relation to the transects. Marked differences in the pattern of the above-ground biomass production between these two grasses relative to their location in the Reserve were also observed, with two peaks of the invasive species (July and January) at the Reserve border. The differences in carbohydrate accumulation, partitioning and composition of individual sugars concerning time of the year and location in the Reserve were more related to the annual growth cycle of both grasses and possibly to specific physiological responses of M. minutiflora to disturbed environments in the Reserve border.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose acetates with different degrees of substitution (DS, from 0.6 to 1.9) were prepared from previously mercerized linter cellulose, in a homogeneous medium, using N,N-dimethylacetamide/lithium chloride as a solvent system. The influence of different degrees of substitution on the properties of cellulose acetates was investigated using thermogravimetric analyses (TGA). Quantitative methods were applied to the thermogravimetric curves in order to determine the apparent activation energy (Ea) related to the thermal decomposition of untreated and mercerized celluloses and cellulose acetates. Ea values were calculated using Broido's method and considering dynamic conditions. Ea values of 158 and 187 kJ mol-1 were obtained for untreated and mercerized cellulose, respectively. A previous study showed that C6OH is the most reactive site for acetylation, probably due to the steric hindrance of C2 and C3. The C6OH takes part in the first step of cellulose decomposition, leading to the formation of levoglucosan and, when it is changed to C6OCOCH3, the results indicate that the mechanism of thermal decomposition changes to one with a lower Ea. A linear correlation between Ea and the DS of the acetates prepared in the present work was identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here on some aspects of the acetylation in LiCl/N,N-dimethylacetamide, DMAc, of untreated and mercerized sisal cellulose, hereafter designated as sisal and M-sisal, respectively. Fiber mercerization by NaOH solution has resulted in the following changes: 29.9% decrease in the index of crystallinity; 16.2% decrease in the degree of polymerization and 9.3% increase in α-cellulose content. A light scattering study of solutions of sisal, M-sisal, microcrystalline and cotton celluloses in LiCl/DMAc has shown that they are present as aggregates, with (an apparent) average aggregation numbers of 5.2, 3.2, 9.8, and 35.3, respectively. The presence of these aggregates affects the accessibility of cellulose during its functionalization. A study of the evolution of the degree of substitution, DS, of cellulose acetate as a function of reaction time showed an increase up to 5 h, followed by a decrease at 7 h. Possible reasons for this decrease are discussed. As expected, M-sisal gave a higher DS that its untreated counterpart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. We present some protocols aiming at partially characterizing banana fruit quality through measurement of some key biochemical parameters. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the steps necessary for achieving four protocols making it possible to measure sugar, organic acids and free ACC contents, and in vitro ACC oxidase activity. Results. Standard results obtained by using the protocols described are presented in the figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-22 (IL-22) is a pleiotropic cytokine that is involved in inflammatory responses. Human IL-22 was incubated with its soluble decoy receptor IL-22BP (IL-22 binding protein) and the IL-22 -IL-22BP complex was crystallized in hanging drops using the vapour-diffusion method. Suitable crystals were obtained from polyethylene glycol solutions and diffraction data were collected to 2.75 angstrom resolution. The crystal belonged to the tetragonal space group P41, with unit-cell parameters a = b = 67.9, c = 172.5 angstrom, and contained two IL-22-IL- 22BP complexes per asymmetric unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layer-by-layer (LBL) assembly was used to combine crystalline rod-like nanoparticles obtained from a vegetable source, cellulose nanowhiskers (CNWs), with collagen, the main component of skin and connective tissue found exclusively in animals. The film growth of the multilayered collagen/CNW was monitored by UV-Vis spectroscopy and ellipsometry measurements, whereas the film morphology and surface roughness were characterized by SEM and AFM. UV-Vis spectra showed the deposition of the same amount of collagen, 5 mg m(-2), in each dipping cycle. Ellipsometry data showed an increment in thickness with the number of layers, and the average thickness of each bilayer was found to be 8.6 nm. The multilayered bio-based nanocomposites were formed by single layers of densely packed CNWs adsorbed on top of each thin collagen layer where the hydrogen bonding between collagen amide groups and OH groups of the CNWs plays a mandatory role in the build-up of the thin films. The approach used in this work represents a potential strategy to mimic the characteristics of natural extracellular matrix (ECM) which can be used for applications in the biomedical field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, cellulose obtained from sisal, which is a source of rapid growth, was used. Cellulose acetates were produced in heterogeneous medium, using acetic anhydride as esterifying agent and iodine as catalyst, to check if the procedure described in the literature for commercial cellulose also is adequate to sisal cellulose. The results indicated that iodine is an excellent catalyst to obtain sisal cellulose acetates, but the reaction is so fast as described in the literature when, instead of sisal, lower average molar weight cellulose (microcrystalline) is used. The crystallinity index (I(c)) of sisal cellulose acetates diminished compared to sisal cellulose, but there was no direct correlation between their degree of substitution (DS) and I(c). Probably acetyl groups were introduced more homogeneously along the short chains of microcrystalline cellulose, when compared to sisal cellulose, and then for microcrystalline cellulose acetates the Ic decreases as DS increases. Using the linear correlation that was found between degree of substitution (DS) and time reaction is possible to control the DS of sisal cellulose acetates, considering a large interval of degrees of substitution (0.3-2.8).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were prodUced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO(2)center dot nH(2)O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO(2)center dot nH(2)O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPF/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young`s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix Caused all increase of defects, which were reduced When modified cellulose fibers were Used. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic hydrolysis of brewer`s spent grain in three different forms: original (untreated), pretreated by dilute acid (cellulignin), and pretreated by a sequence of dilute acid and dilute alkali (cellulose pulp), was studied to verify the effect of hemicellulose and lignin on cellulose conversion into glucose. The hydrolysis was carried out using a commercial cellulase concentrate (Celluclast 1.5 L) in an enzyme/substrate ratio of 45 FPU/g, 2% (w/v) substrate concentration, 45 degrees C for 96 h. According to the results, the cellulose hydrolysis was affected by the presence of hemicellulose and/or lignin in the sample. The cellulose conversion ratio (defined as glucose yield + cellobiose yield) from cellulignin was 3.5-times higher than that from untreated sample, whereas from cellulose pulp such value was 4-times higher, correspondent to 91.8% (glucose yield of 85.6%). This best result was probably due to the strong modification in the material structure caused by the hemicellulose and lignin removal from the sample. As a consequence, the cellulose fibers were separated being more susceptible to the enzymatic attack. It was concluded that the lower the hemicellulose and lignin contents in the sample, the higher the efficiency of cellulose hydrolysis. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brewer`s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 N NaOH solution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes. However, soda pulping of acid pretreated BSG gave a cellulose-rich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and < 3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e. g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.