3 resultados para solid acids

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although cellulose acetates, CAs, are extensively employed there is scant information about the systematic dependence of their properties on their degree of substitution, DS; this is the subject of the present work. Nine CAs samples, DS from 0.83 to 3.0 were synthesized; their films were prepared. The following solvatochromic probes have been employed in order to determine the empirical polarity, E (T)(33); ""acidity, alpha""; ""basicity, beta"", and ""dipolarity/polarizability, pi*"" of the casted films: 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl) phenolate, WB; 4-nitroaniline; 4-nitroanisole; 4-nitro-N,N-dimethylaniline; 2,6-diphenyl-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, RB. Additionally, two systems, ethanol plus ethyl acetate (EtOH-EtAc), and cellulose plus cellulose triacetate, CTA, were employed as models for CAs of different DS. Regarding the model systems, the following was observed: (i) For EtOH-EtAc, the dependence of all solvatochromic parameters on the ""equivalent-DS"" of the binary mixture was non-linear because of preferential solvation; (ii) The dependence of E (T)(33) on equivalent DS of the cellulose-CTA films is linear, but the slope is smaller than that of the corresponding plot for CAs. This is attributed to the more efficient hydrogen bonding in the model system, a conclusion corroborated by IR measurements. The dependence of solvatochromic parameters of CAs on their DS is described by the simple equations; a consequence of the substitution of the OH by the ester group. The thermal properties of bulk CAs samples were investigated by DSC and TGA; their dependence on DS is described by simple equations. The relevance of these data to the processing and applications of CAs is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium dioxide was obtained by hydrolysis of the corresponding ethoxide, followed by washing, drying, and calcination at 80, 160, 240, 320, 400, and 700 C, respectively. The following surface properties of the solids obtained were determined as a function of the calcinations temperature: T(Calcn); area by the BET method; BrOnsted acidity by titration with sodium hydroxide; empirical polarity, ET(30); Lewis acidity, alpha(Surf); Lewis basicity, beta(Surf); and dipolarity/polarizability pi*(Sturf), by use of solvatochromic indicators. Except for le surf whose value increased slightly, heating the samples resulted in a decrease of all of the above-mentioned surface properties, due to the decrease of surface hydroxyl groups. This conclusion has been corroborated by FTIR. Values of E(T)(30), alpha(Surf), and pi*(Surf) are higher than those of water and alcohols; the BrOnsted and Lewis acidities of the samples correlate linearly. The advantages of using solvatochromic indicators to probe the surface properties and relevance of the results to the applications of TiO(2) are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical procedure for the separation and quantification of 20 amino acids in cachacas has been developed involving C18 solid phase cleanup, derivatization with o-phthalaldehyde/2-mercaptoethanol, and reverse phase liquid chromatography with fluorescence detection. The detection limit was between 0.0050 (Cys) and 0.25 (Ser) mg L-1, whereas the recovery index varies from 69.5 (Lys) to 100 (Tyr)%. Relative standard deviations vary from 1.39 (Trp) to 13.4 (Glu)% and from 3.08 (Glu) to 13.5 (His) for the repeatability and intermediate precision, respectively. From the quantitative profile of amino acids in 41 cachacas, 5 turns, and 12 whisky samples, the following order of amino acids in significant quantities is observed: Gly = Ser < Cys < Ile < His < Pro = Asp < Asn < Tyr for cachaca; Phe < Glu = Gln = Val = Ala < His = Gly Thr = Arg = Tyr < Asn Ser = Lys = Pro < Cys = Asp for rum; and Ala = Asn < Trp < Gln = His = Met = Ile = Cys < Thr < Asp Leu < Phe = Lys < Ser = Gly = Tyr = Val < Glu = Pro < Arg for whisky samples. (C) 2007 Elsevier Ltd. All rights reserved.