97 resultados para sodium-metaphosphate glasses
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Energy transfer processes were studied in two sets of Yb3+ and Tm3+ co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Forster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb3+ ions, cross-relaxations between Yb3+ and Tm3+ ions, and interactions with OH- radicals. The results indicated that Yb -> Tm energy transfer favors 1.8 mu m emissions, and there is no evidence of concentration quenching up to 2% Tm2O3 doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH- radicals is more pronounced. (c) 2007 Published by Elsevier B.V.
Resumo:
The local order and distribution of Na in the mixed alkali metaphosphate glasses K(x)Na(1-x)PO(3) were analyzed, with the aim to identify segregation or a random mixture of both cation species. X-Ray photoelectron spectroscopy and several nuclear magnetic resonance (NMR) techniques were applied, including (31)P and (23)Na high-resolution spectroscopy, (23)Na triple quantum-MAS NMR, rotational echo double resonance between (31)P and (23)Na, and (23)Na NMR spin echo decay. The structural picture emerging from these results reveals the similarity in the local Na environments in the glasses but also subtle structural adjustments with increasing degree of K replacement. While both cations are intimately mixed at the atomic scale, the (23)Na spin echo decay data suggest a detectable like-cation preference in the spatial distribution of the ions. These structural properties are consistent with those determined in Li-Rb metaphosphates, indicating that the origin of the mixed alkali effect observed in the conductivity of Na-K metaphosphate glasses may also be explained by structurally blocked ion diffusion.
Resumo:
The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb-(PO(3))(2)center dot xAI(PO(3))(3) with 0 <= - x <= 1 were analyzed to determine the effect of the substitution of Pb by Al on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)Al, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for Al decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent Al-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in Al. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AlO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AlO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AlO(n) polyhedra. There is no corner sharing of O between AlO(n) and PbO(n) polyhedra nor between AlO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-Al and Ca-Al metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.
Resumo:
The effects of iron ions on dielectric properties of lithium sodium phosphate glasses were studied by non-usual, fast and non-destructive microwave techniques. The dielectric constant (epsilon`). insertion loss (L) and microwave absorption spectra (microwave response) of the selected glass system xFe(2)O(3)center dot(1 - x)(50P(2)O5 center dot 25Li(2)O center dot 25Na(2)O), being x = 0, 3, 6, ....,15 expressed in mol.%, were investigated. The dielectric constant of the samples was investigated at 9.00 GHz using the shorted-line method (SLM) giving the minimum value of epsilon` = 2.10 +/- 0.02 at room temperature, and increasing further with x, following a given law. It was observed a gradual increasing slope Of E in the temperature range of 25 <= t <= 330 degrees C, at the frequency of 9.00 GHz. Insertion loss (measured at 9.00 GHz) and measurements of microwave energy attenuation, at frequencies ranging from 8.00 to 12.00 GHz were also studied as a function of iron content in the glass samples. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Sodium alumino-phosphate glasses co-doped with Yb(3+) and Tm(3+) ions have been prepared with notably low OH(-) content, and characterized from the viewpoint of their spectroscopic properties. In these glasses, Yb(3+) acts as an efficient sensitizer of excitation energy at 0.98 mu m - which can be provided by high power and low cost diode lasers, and subsequently undergoes non-resonant energy transfer to Tm(3+) ions ((2)F(5/2), (3)H(6) --> (2)F(7/2), (3)H(5)). Through this process, the emitting level (3)F(4) is rapidly populated, generating improved emission at 1.8 mu m ((3)F(4) --> (3)H(6)). In order to guarantee the efficiency of such favorable energy transfer, energy losses via multiphonon decay, Yb-Yb radiative trapping, and non- radiative transfer to OH(-) groups were evaluated, and minimized when possible. The dipole - dipole energy transfer microscopic parameters corresponding to Yb(3+) --> Tm(3+), Yb(3+) --> Yb(3+) and Tm(3+) --> Tm(3+) transfers, calculated by the Forster-Dexter model, are C(Yb-Tm) = 2.9 x 10(-40) cm(6) s(-1), C(Yb-Yb) = 42 x 10(-40) cm(6) s(-1) and C(Tm-Tm) = 43 x 10(-40) cm(6) s(-1), respectively.
Resumo:
The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R = 1.9 nm. The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R = 2 nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R = 1.9 nm. Thus, on cooling, the liquid nanodroplets with R < 1.9 nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
In order to have a better understanding of the role of the structure and the defects involved in the polarization processes in an 85TeO(2)-15Na(2)O mol% glass, we used the thermally stimulated depolarization currents (TSDC technique). The TSDC of the non-irradiated sample presented a strong negative peak of current at the temperature of 340 K, preceded by a relatively weak positive peak at about 300 K. after different d.c. voltages of 1200, 1500 and 2000 V were applied. No response was obtained with 1000 V. but the peak intensity increased considerably for voltages above 1200 V. After gamma-irradiation of 25 and 50 KGy doses, a depolarization of the negative peak was observed in the sample submitted to 25 KGy, whereas for the sample irradiated with 50 KGy, six TSDC peaks appeared at regular intervals of 5 KGy, in the temperature range of 100 and 300 K. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.
Resumo:
Chemical substances used during biomechanical preparation of root canals can alter the composition of dentin surface and affect the interaction with restorative materials. OBJECTIVE: The purpose of this study was to evaluate the microtensile bond strength (µTBS) of a self-etching adhesive system to dentin irrigated with sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA). MATERIAL AND METHODS: Thirty human third molars were sectioned 3 mm below the occlusal surface, polished with 600- to 1200-grit silicon carbide papers, and randomly divided into 3 groups: G1 (control): no irrigating solution; G2: 1% NaOCl; and G3: 1% NaOCl followed by the application of 17% EDTA. The specimens received the self-etching adhesive system (XENO III - Dentsply), restored with microhybrid composite resin (Z250 - 3M ESPE), sectioned and trimmed to create 4 hourglass-shaped slabs of each tooth. The slabs were tested in microtensile strength in a universal testing machine (Emic DL 2000) at a crosshead speed of 0.5 mm/min until fracture. The results were analyzed statistically by ANOVA and Newman-Keuls test. RESULTS: Mean µTBS values and standard deviations in MPa were: G1 = 11.89 ± 4.22; G2 = 19.41 ± 5.32; G3 = 11.34 ± 4.73. 1% NaOCl increased the adhesive resistance significantly (p<0.001/F=22.5763). The application of 1% NaOCl/17% EDTA resulted in statistically similar µTBS to the control group. CONCLUSIONS: None of the irrigants affected negatively the µTBS of XENO III to dentin. The use of 1% NaOCl alone resulted in higher bond strength than the other treatments. The combination of 1% NaOCl and 17% EDTA produced similar bond strength to that of untreated dentin.
Resumo:
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 ºC) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 ºC (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 ºC, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 ºC. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
The objective of this work was to evaluate the levels of sodium monensin on lactating cows and their effects on productive performance and milk protein fraction composition. It was used 12 Holstein cows, distributed in four balanced 3 × 3 Latin squares, and fed three diets: one control without monensin, and two diets with monensin at the levels of 24 or 48 mg/kg DM added to the concentrate. Milk production was daily measured throughout the entire experimental period. The samples used for analysis of milk composition were collected on two alternated days from the two daily milking. Non-protein nitrogen, total nitrogen and non-casein nitrogen contents were directly evaluated in the milk, and casein, whey protein and true protein contents were indirectly determined. The use of monensin in the rations reduced dry matter and nutrient intake, especially when diet with 48 mg/kg of dry matter was given. The ration with 24 mg/kg of DM increased milk production, with or without correction, and also fat and lactose yield, and it improved productive efficiency. The levels of monensin in the ratios did not influence contents of milk crude protein, non-protein nitrogen, non-casein nitrogen, true protein, casein, casein/true protein ratio, whey protein, and of all those fractions expressed as percentage of crude protein. The utilization of monensin in the ratio at the dose of 24 mg/kg of DM influences positively the productive performance of lactating cows, and it does not influence the composition of milk protein fractions.
Resumo:
The use of aluminum silicates for decontaminating animal feed containing aflatoxins has yielded encouraging results in chicken and turkey poults. In contrast, very few studies have tested these substances in aquaculture. In this work, we investigated the efficacy of a trout diet containing 0.5% hydrated sodium aluminosilicate (HSAS) in protecting against contamination with aflatoxin B1. Trout were reared on these diets for one year and the experimental groups were examined monthly for hepatic presumptive preneoplastic and neoplastic lesions. Regardless of the presence of HSAS, all of the fish that received aflatoxin in their diet have shown hepatic lesions indicative of a carcinogenic process, presenting also the development of cancer in some fish. The concentration of HSAS used in this study was ineffective in preventing the onset of hepatic lesions induced by aflatoxin B1 in rainbow trout.